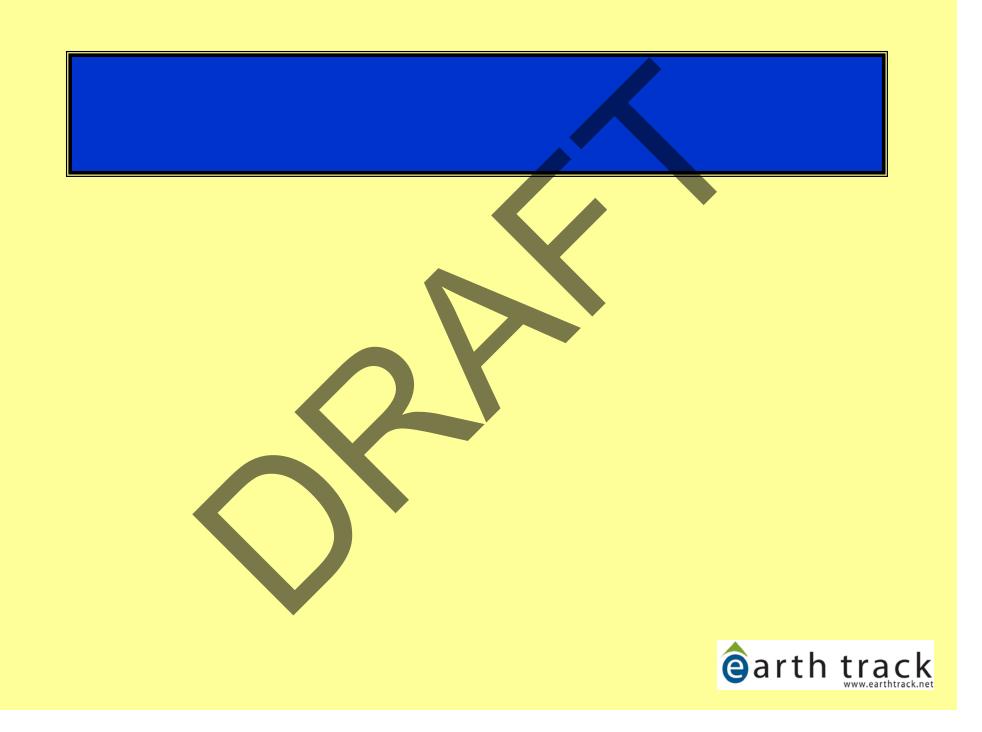
#### Government Subsidies to Nuclear Power: A Case Study of UniStar's Calvert Cliffs III Reactor


#### Nonproliferation Policy Education Center Conference "The Future of Nuclear Energy in a Carbon Constrained World"

Carnegie Corporation, New York, NY

November 5, 2007

Doug Koplow Earth Track, Inc. 2067 Massachusetts Ave., 4<sup>th</sup> Floor Cambridge, MA 02140 (617) 661-4700





#### Historic Subsidies to Nuclear: Subsidy Dependency an Old Problem

Subsidizing Plant Construction and Operation (2004\$)

| Period of<br>Analysis | Federal \$<br>\$Bill | Subsidy,<br>ions |      | sidy,<br>/kWh | Avg Subsidy as %<br>of Industrial<br>Price | Analysis                                                          | Notes                                         |
|-----------------------|----------------------|------------------|------|---------------|--------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|
|                       | Low                  | High             | Low  | High          |                                            |                                                                   |                                               |
| 1947-99               | 160.87               | -                | 1.33 |               | NA                                         | Goldberg/Renewable Energy<br>Porfolio Project (2000)              | P-A not estimated.                            |
| 1968-90               | 110.52               | -                | 2.06 | -             | 32.8%                                      | Komanoff/Greenpeace (1992)                                        | P-A not estimated.                            |
| 1950-90               | 128.69               | -                | 2.35 |               | NA                                         | Komanoff/Greenpeace (1992)                                        |                                               |
| 1989                  | 6.89                 | 14.61            | 1.31 | 2.76          | 31.2%                                      | Koplow/Alliance to Save<br>Energy (1993)                          |                                               |
| 1985                  | 24.23                |                  | 6.31 |               | 81.8%                                      | Heede, Morgan, Ridley/Center<br>for Renewable Resources<br>(1985) | P-A not estimated.                            |
| 1981                  | -                    | -                | 5.29 | 11.16         | 104.0%                                     | Chapman et al./US EPA<br>(1981)                                   | Tax expenditures only.                        |
| 1950-79               | -                    |                  | 3.71 | 5.46          | NA                                         | Bowring/Energy Information<br>Administration (1980)               | Tax and credit<br>subsidies not<br>estimated. |



# Venture Overview: UniStar Nuclear, LLC and Its Partners

- **Cutting edge technology?** Calvert Cliffs will use an Areva 1600 MW "Evolutionary Power Reactor".
- **Main players.** Joint venture formed July 2007 between Constellation Energy and Electricite de France (EDF).
  - Absorbed earlier partnership between Constellation and Areva NP.
  - EDF committed \$350m immediate investment; \$275m additional if benchmarks met. Can buy up to 9.9% of Constellation.
- Current roles.
  - Constellation and EDF: own and operate Calvert Cliffs III (Lusby, MD) and at least three other reactors.
  - Areva NP: Reactor technology and marketing.
    - Plants will all use Areva's European Pressurized Reactor (EPR). Called "Evolutionary Power Reactor" in US; Areva spent \$200m to adapt reactor to US market.
    - Areva comprised of old Framatome and 1/3 ownership by Siemens. Both French and German governments have significant ownership.
  - Bechtel: Architect, engineer, and constructor of new plants.
  - Additional partners for license preparation; and forgings and machining.



## Venture Strategy: Market Side

- First mover advantage, to secure access to key subsidies and scarce parts.
  - First firm to submit COL paperwork (albeit partial).
  - Early standardization of reactor design.
- Economies of scale through multiple installations, single partners, standardization.
- Minimize public opposition by using existing reactor sites.



# Venture Strategy: Political Side

#### • Subsidies integral to build decisions.

- Michael Wallace, Co-CEO, Constellation.
  - "Without loan guarantees we will not build nuclear power plants." (NYT, July 2007).
- Joe Turnage, Sr. VP, Constellation Generation Group
  - Associate Member Geesman: "And just to revisit the cap question again. Your business model is premised on receiving the federal loan guarantee for each of your four projects. Is that correct?
  - Dr. Turnage: "That is correct." (CEC Workshop Transcript, 29 June 2007: 302).
- Foreign subsidies also important.
  - "COFACE, the French Ex-Im Bank equivalent, and JBIC, the Japanese equivalent, absolutely [sic] prepared to loan into these projects at attractive rates. They are not going to do it unless we fix the pari passu problem." (Turnage, CEC, 295).

#### Changing the political environment

- Lobbying. "Constellation spent \$100,000 in the first half of this year to lobby the federal government on the issue [of loan guarantees], disclosure forms show." (*Baltimore Sun*, 6 September 2007).
- Reduce public oversight. Redefine "construction" to exclude oversight for all non-reactor site work.



## Constellation's Ever-Changing Cost Estimates

- Overnight costs internal estimates:
  - 2005: \$1,600-\$2,000/kWe (UniStar EPR, 2005).
  - March 2007: \$1,935/kWe (Turnage, 12 March 2007).
  - June 2007: \$2,400/kWe (Turnage, CEC: 288).
- "All-in" costs:
  - Industry, June 2007: \$5,000-\$6,000/kWe (Quillian, NEI, CEC: 260).
  - Constellation, June 2007: \$3,125/kWe (Turnage, CEC: 281).
  - Industry, October 2007: \$5,000-\$6,000/kWe (Moody's, 10/07).
- Which metric?
  - "From a credit perspective, Moody's is indifferent to what the 'overnight' cost of the actual nuclear generating plant might be – as overnight costs exclude owner's costs and price escalation." (Moody's, 10/07).



#### Nuclear Subsidies to Capital Investment and Market Price Support

|                                  | Revelance to                  | Anticipated Subsidy |
|----------------------------------|-------------------------------|---------------------|
|                                  | Calvert Cliffs III            | Magnitude           |
| Subsidies to Capital Costs       |                               |                     |
| Cost of Funds                    |                               |                     |
| Federal loan guarantees          | Eligible                      | Very large          |
| Advantaged credit, foreign banks | Eligible                      | Large               |
| Ratebasing of WIP/AFUDC          | Merchant plant; not relevant. | N/A                 |
| Regulatory risk delay insurance  | Eligible                      | Medium              |
| Cost of Capital Goods            |                               |                     |
| Accelerated depreciation         | Automatic                     | Large               |
| Research and development         | Pro-rata beneficiary          | Low to Medium       |
| Output based subsidies           |                               |                     |
| Production tax credit            | Eligible                      | Large               |
| Market Price support             |                               |                     |
|                                  | Nuclear eligible in some      |                     |
|                                  | federal amendments; not       |                     |
| Renewable portfolio standard     | currently in MD standard.     | Potentially Large   |



# Nuclear Subsidies to Operating Costs (1)

|                                                                                      | Revelance to         | Anticipated Subsidy |  |  |
|--------------------------------------------------------------------------------------|----------------------|---------------------|--|--|
|                                                                                      | Calvert Cliffs III   | Magnitude           |  |  |
| Subsidies to Operating Costs                                                         |                      |                     |  |  |
| Fuel and Enrichment                                                                  |                      |                     |  |  |
| P-A cap on liabliity: fuel cycle,                                                    |                      |                     |  |  |
| transport, contractors.                                                              | Pro-rata beneficiary | Moderate            |  |  |
| Uranium % depletion                                                                  | Pro-rata beneficiary | Low                 |  |  |
| HEU dilution programs                                                                | Pro-rata beneficiary | Unknown             |  |  |
| Enrichment D&D: LT funding shortfall                                                 | Pro-rata beneficiary | Low                 |  |  |
| Virtually free patenting of federal<br>hardrock mining claims (including<br>uranium) | Pro-rata beneficiary | Low                 |  |  |
| No royalty payments on uranium                                                       |                      | LOW                 |  |  |
| extracted from federal lands                                                         | Pro-rata beneficiary | Low                 |  |  |
| Inadequate bonding for uranium mine sites                                            | Pro-rata beneficiary | Low                 |  |  |
| Insurance                                                                            |                      |                     |  |  |
| P-A cap on liability                                                                 | Automatic            | Large               |  |  |
| Regulatory oversight                                                                 |                      |                     |  |  |
| Incomplete recovery of NRC                                                           |                      | Low; most costs now |  |  |
| oversight costs.                                                                     | Pro-rata beneficiary | covered.            |  |  |



## Nuclear Subsidies to Operating Costs (2) and Closure/Post Closure

| Subsidies to Operating Costs, continued |                             |                   |
|-----------------------------------------|-----------------------------|-------------------|
| Taxes                                   |                             |                   |
| MD property tax abatement               | Specific to plant           | Relatively small  |
| Depreciated value rather than           |                             |                   |
| assessed value as MD tax base           | Automatic                   | Relatively small  |
| Plant security                          |                             |                   |
|                                         | Plant designed for higher   |                   |
| Low design basis threat                 | than standard               | N/A               |
| Emissions and waste management          |                             |                   |
| Windfall CO2 credits from               |                             |                   |
| grandfathering based on energy          | Depends on CO2 control      |                   |
| output.                                 | regime.                     | Potentially Large |
| Inadequacy of waste disposal fee -      |                             |                   |
| spent fuel                              | Pro-rata beneficiary        | Low-Moderate      |
|                                         | Not relevant since new      |                   |
| Payments for late delivery of           | reactor not covered by old  |                   |
| disposal services                       | agreement.                  | N/A               |
| Subsidies to Closure/Post-Closure       |                             |                   |
| Decommissioning trusts: preferential    | Only preferential tax rates |                   |
| tax rates, special transfers;           | would be relevant for a new |                   |
| underaccrual.                           | reactor.                    | Relatively small  |



## Valuing the Subsidies: UniStar's Estimate

- No PTCs or loan guarantees: \$80/MWh.
- Loan guarantees, no PTCs: \$48/MWh.
- Loan guarantees and PTCs: \$37/MWh
  - Constellation's Turnage tags the difference as "potential rate payer value," though they are a merchant supplier.
  - Turnage: "More fundamentally, at \$80/MWh, these plants would not likely be built."
- They value the subsidies at **\$575 million per US Evolutionary Power Reactor per year**. (Turnage, 12 March 2007:48).
  - 1600 MW at 95.3% capacity factor (their assumption) results in a subsidy of 4.3 c/kWh.
  - EPACT allows guarantees to run 30 years; nominal value over this time would be nearly \$13 billion for a single reactor.



## Optimistic Underlying Assumptions Understate Subsidies

- Cost of funds too low. Underestimates merchant cost of capital.
  - Assumes 50% debt (@12%); 50% equity (@18%).
  - Too optimistic? Constellation current ROE is 18.93%; clearly new build nuclear deserves more.
  - Constellation's 5-year Debt/Cap ratio is 51.8% for existing facilities. (Moody's 10/07).
  - Absent subsidies, equity ratios would need to be substantially higher 65-70% even for non-nuclear merchant plants. (Keystone, 6/07).

#### • Capacity factor too high.

- Constellation assumes 95.3% capacity factor; this is aggressive.
- Highest US industry-wide capacity factor was 90.3% (2002). Keystone high value is only 90% as well; Harding views 75-85% as reasonable for new build.
- While 34 plants exceeded UniStar target in 2006, lifetime performance at this level, with a new reactor design, will be much more difficult.
- Plant costs too low. Base case assumes overnight costs of \$1,935 kWe.
  - Company estimates already higher; and may be higher still at point construction starts.



## UniStar Calculations Also Ignore "Baseline" Subsidies

|                                          | Low                | High    |                                              |
|------------------------------------------|--------------------|---------|----------------------------------------------|
|                                          | Cents p            | ber kWh |                                              |
| Private investment in Calvert Cliffs III |                    |         |                                              |
| Base case of Calvert Cliffs              | 3.7                | 3.7     | Constellation estimate, Mar. 07              |
|                                          |                    |         |                                              |
| Public investment in Calvert Cliffs III  |                    |         |                                              |
| Selected EPACT subsidies                 |                    |         |                                              |
|                                          |                    |         |                                              |
| Production tax credits                   | 1.1                | 1.1     | Constellation estimate assuming full access. |
|                                          |                    |         | Actual value probably higher due to higher   |
| Loan Guarantees, 100% of debt            | 3.2                | 3.2     | merchant cost of capital.                    |
| Industry total estimated cost            | 8.0                | 8.0     |                                              |
|                                          |                    |         |                                              |
| Additional subsidies ignored in C        | onstellation model | Is      |                                              |
| Accelerated depreciation                 | 0.3                | 0.6     | 15 yr 150% DB vs. service life.              |
| Price-Anderson cap on reactors           | 0.5                | 2.5     | Based on Heyes (2002); values uncertain.     |
| Waste fund short-fall                    | -                  | 0.2     | Based on Rothwell (2005); needs updating.    |
|                                          |                    |         |                                              |
| Calvert Co. property tax abatement       | 0.0                | 0.0     | \$20m/year.                                  |
| Cost of capital value of delay           |                    |         |                                              |
| insurance, first two reactors            | 0.7                | 0.8     | Based on Bradford (2007).                    |
|                                          |                    |         |                                              |
| Public subsidy                           | 5.8                | 8.4     |                                              |
| Public/private share                     | 155%               | 226%    |                                              |
| Full cost of power                       | 9.5                | 12.1    |                                              |



#### Price Anderson at Calvert Cliffs

- New reactors *would not* have been covered without the extension in 2005.
- Proximity to population centers, expensive RE, should result in higher than average premiums under a real insurance program.
- Calvert Cliffs located 50 miles from Washington, DC; 75 miles from Baltimore.
  - Nearly 8 million people live in the Baltimore-Washington, DCconsolidated metropolitan area.
  - Among the most expensive real estate markets in the country.



## Price-Anderson: Adequacy of Coverage

Insurance Coverage if Accident At Calvert Cliffs III

|                                                    | Nominal  | Present Value |         |  |  |  |
|----------------------------------------------------|----------|---------------|---------|--|--|--|
| Total payments from Calvert III to offsite parties |          |               |         |  |  |  |
| Primary insurance, \$mils \$                       | 300.0    | \$            | 300.0   |  |  |  |
| Retrospective premiums, \$mils                     | 95.8     | \$            | 64.4    |  |  |  |
| Total liability for Calvert III. \$                | 395.8    | \$            | 364.4   |  |  |  |
| Additional resources from other reactors           |          |               |         |  |  |  |
| Retrospective premiums, \$mils \$                  | 9,963.2  | \$            | 6,696.2 |  |  |  |
| Total available to offsite parties \$              | 10,754.8 | \$            | 7,424.9 |  |  |  |
| Adequacy of Coverage                               |          |               |         |  |  |  |
| Balt/WDC MSA 2000 Population, million              | IS       | •             | 7.6     |  |  |  |
| Total insurance available, \$/person               |          | \$            | 977     |  |  |  |
| Calvert III coverage, \$/person                    |          | \$            | 48      |  |  |  |
| Reactor::latte ratio                               |          |               | 17      |  |  |  |



## Price-Anderson: Protecting Yourself Versus Protecting Others

|                                                       | \$     | <b>overage</b><br>Millions |
|-------------------------------------------------------|--------|----------------------------|
| Calvert III Insurance for property and business opera | itions |                            |
| Property Insurance                                    |        |                            |
| Nuclear property                                      | \$     | 500.0                      |
| Blanket excess                                        | \$     | 2,250.0                    |
| Terror attacks under conventional property            | \$     | 1,000.0                    |
| Accidental outage coverage                            | \$     | 490.0                      |
|                                                       |        |                            |
| Total available to business                           | \$     | 4,240.0                    |
|                                                       |        |                            |
| Calvert III self-coverage/offsite coverage            |        | 11.6                       |
|                                                       |        |                            |

Source: Constellation Energy Group Form 10-K, December 31, 2006.



#### Title XVII Loan Guarantees

- NGOs late to the game; not a single one submitted comments on the final rule.
- LGs provide large subsidy even if no default.
- Allows facilities to borrow at roughly Treasury bond rate, rather than junk bond debt levels.
- Allows facilities to use 80% debt for 30 years, rather than at least 65-70% equity.
- GAO, CBO, OMB all concerned DOE will underestimate risk premiums in up-front collections.
- Magnitudes of funding can crowd out smaller scale, less powerful competitors.



#### Summary

- The public is taking on a large share of the risk for the nuclear build out.
- The most important subsidies to nuclear are via shifting risks away from private investors, not from direct cash payments.
  - These are difficult to find, value, and challenge.
  - Federal loan guarantees pose the most immediate fiscal risks and potential to distort energy markets in damaging ways.
  - State and county policies are becoming more important not just in MD, but in TX and rate-base states as well (e.g., FL, SC have special rules for cost recovery).
- Price-Anderson liability caps need to be more fully analyzed.
  - One of the most important subsidies to nuclear; never comprehensively evaluated.
  - Caps are well below what utilities are buying for their own plant and operations.

