Statistical Background Data

- Interest Rates and Other Financial Information
- Capital Expenditures in the Energy Sector
- Energy Shares of Rail and Waterborne Transport
- Historical Federal Spending on Energy R&D
- Energy Sector Contributions to Selected Environmental Problems
- Summary of Cost Studies of Environmental Problems and Regulation
- Conversion Data Used to Generate Subsidy Intensity Estimates
- Electricity Mix in 1989

Interest Rates and Economic Indicators Worksheet

	_							High-	Prime	Federal	Corporate	Bonds				lumb.	111.La			
Year	Treasury 1 year	Securities 3 year	10				_	Grade	Rate	Funds			Public	Julity Bonds		Light Pow., Gas	Usiny Last	Rate at	GNP implicat	Bond-Buyer High
1044		onstant Mar	10 yea huritine\	r 20 yea	r 30 year	Last	Refin.	Munic.		Rate	(Aaa)	(Baa)	(AA)	(A)	(BBB)	Moody's	Refinance	Last	Price Defl.	Grade
	(1)	(2)	(1)	(1)	(3)	Rəfinan.	Rate	(S&P)	-		(Moodys)		(S&P)	(S&P)	(\$&P)	Wold, Ave.	Year	Refn.	(1982-100)	Bonds
1909	.,	(-/	(.)	(1)	(3)	(4) 1969	(5) 0.06320	(6)	(7)	(8)	(9)	(9)	(10)	(10)	(10)	(11)	(12)	(5)	(13)	(14)
1910						1970	0.06870										1969	0.07980		
1911						1971	0.06120										1970	0.08790		
1912						1972	0.06010										1971	0.07700		
1913						1973	0.07120										1972 1973	0.07500		
1914 1915						1974	0.08060										1974	0.09590		
1916						1975	0.07990										1975	0.09970		
1917						1976 1977	0.07610 0.07750										1976	0.06920		
1918						1978	0.06490										1977	0.08430		
1919					0.04730	1979	0.09280										1978	0.09300		
1920					0.05320	1980	0.11270										1979	0.10850		
1921					0.05090	1981	0.13450										1980	0.13460		0.0497
1922					0.04300	1982	0.12760									0.06020	1981 1982	0.16310 0.14930		0.0502
1923 1924					0.04360	1983	0.11180									0.06140	1983	0.12700		0.0419 0.0423
1925					0.04060	1984	0.12410									0.05900	1984	0.14250		0.0423
1926					0.03860 0.03680	1985 1986	0.10790									0.05500	1985	0.11830		0.0409
1927					0.03340	1980	0.07780 0.08590									0.05400	1986	0.09610		0.0408
1928					0.03330	1988	0.08960									0.05110	1987	0.09740		0.0397
1929					0.03600	1959	0.04130	0.04270	0.05750		0.04730	0.05900				0.05010	1988	0.10030		0.0398
1930					0.03290	1960	0.04060				0.04730	0.00500				0.05370 0.05110	1959	0.04920	15.0	0.0429
1931					0.03340	1961	0.03920									0.04650	1960 1961	0.04720	14.6	0.0408
1932 1933					0.03680	1962	0.03990									0.05660	1962	0.04720 0.04400	13.3 11.9	0.0388 0.0433
1934					0.03310	1963	0.04050	0.04710	0.02750		0.04490	0.07760				0.04950	1963	0.04400	11.7	0.043
1935					0.03120 0.02790	1964 1965	0.04190									0.04810	1964	0.04550	12.5	0.0373
1936					0.02690	1965	0.04270 0.04770									0.03920	1965	0.04610	12.7	0.0299
1937					0.02740	1967	0.05010									0.03560	1966	0.05530	12.7	0.0263
1938					0.02610	1968	0.05450									0.03560	1967	0.06070	13.2	0.0267
1939					0.02410	1969	0.06320	0.02760	0.01500		0.03100	0.04960				0.03490	1968	0.06800	13.0	0.0258
1940					0.02260	1970	0.06870	0.02500	0.01500		0.02840	0.04750				0.03450 0.03090	1969 1970	0.07980	12.7	0.0242
1941					0.02050	1971	0.06120	0.02100	0.01500		0.02770	0.04330	0.02812	0.02995	0.03451	0.03150	1971	0.08790 0.07700	13,0 13,8	0.022
1942 1943					0.02460	1972	0.06010	0.02360	0.01500		0.02830	0.04280	0.02865		0.03400	0.03350	1972	0.07500	13.8	0.01 <i>5</i> 0.0188
1944					0.02470 0.02480	1973	0.07120	0.02060	0.01500		0.02730	0.03910	0.02729	0.02927	0.03165	0.03260	1973	0.07910	15.1	0.0158
1945					0.02480	1974 1975	0.08060 0.07990	0.01860	0.01500		0.02720	0.03610	0.02712		0.03126	0.02970	1974	0.09590	15.3	0.0134
1946					0.02190	1976	0.07610	0.01670 0.01640	0.01500		0.02620 0.02530	0.03290	0.02650		0.02925	0.02870	1975	0.09970	15.7	0.0121
1947					0.02250	1977	0.07750	0.02010	0.01625		0.02530	0.03050 0.03240	0.02571	0.02662 0.02730	0.02812 0.02897	0.02740	1976	0.06920	19.4	0.0123
1948					0.02440	1978	0.08490	0.02400	0.01875		0.02820	0.03470	0.02910		0.02.897	0.02790 0.03070	1977 1978	0.08430	22.1	
1949					0.02310	1979	0.09280	0.02210	0.02000		0.02660	0.03420	0.02744	0.02867	0.03157	0.03060	1979	0.09300 0.10850	23.6 23.5	
1950 1951					0.02320	1980	0.11270	0.01980	0.02070		0.02620	0.03240	0.02666	0.02743	0.03065	0.02860	1980	0.13460	23.9	
1952					0.02570 0.02680	1981	0.13450	0.02000	0.02560		0.02860	0.03410	0.02941	0.03107	0.03430	0.03250	1981	0,16310	25.1	
1953	0.02140	0.02470	0.02850	0.03060	0.02000	1982 1983	0.12760 0.11180	0.02190	0.03000		0.02960	0.03520	0.03046	0.03224	0.03488	0.03360	1982	0.14930	25.5	
1954	0.01050	0.01630		0.02640		1984	0.12410	0.02720	0.03170		0.03200 0.02900	0.03740	0.03327	0.03468	0.03716	0.03750	1983	0.12700	25.9	
1955	0.02040	0.02470	0.02820	0.02900		1985	0.10790	0.02530	0.03160	0.01700		0.03510	0.02979	0.03149	0.03407	0.03110	1984	0.14250	26.3	
1956	0.02990	0.03190	0.03180	0.03140		1986	0.07780	0.02930		0.01780 0.02730	0.03060 0.03360	0.03530 0.03880	0.03139	0.03302	0.03417	0.03300	1985	0.11830	27.2	
1957	0.03620	0.03980	0.03650	0.03540		1987	0.08590	0.03600	0.04200	0.03110	0.03890	0.04710	0.03479	0.03689 0.04350	0.03830	0.03860	1986	0.09610	28.1	
1958	0.02270	0.02840	0.03320	0.03480		1968	0.08960	0.03560	0.03830	0.01570	0.03790	0.04730	0.03904	0.04350	0.04674 0.04533	0.04800	1987	0.09740	29.1	
1959	0.04240	0.04460	0.04330	0.04130		1959	0.04130	0.03950	0.04480	0.03300	0.04380	0.05050	0.04533	0.04689	0.04996	0.04180	1988 1959	0.10030	29.7	
1960	0.03630	0.03960	0.04120	0.04060		1960	0.04060	0.03730	0.04820	0.03220	0.04410	0.05190	0.04543	0.04659	0.04817	0.04720	1960	0.04320	30.4 30.9	
1961 1962	0.02980	0.03540	0.03880 0.03950	0.03920		1961	0.03920		0.04500	0.01960	0.04350	0.05080	0.04517	0.04611	0.04699	0.04720		0.04720	31.2	
1963	0.03360	0.03670	0.04000	0.03990		1962 1963	D.03990		0.04500	0.02660	0.04330	0.05020	0.04336	0.04423	0.00453	0.04400	1962	0.04400	31.9	
1964	0.03850	0.04030	0.04190	0.04190		1964	0.04050		0.04500	0.03180 0.03500	0.04260	0.04860	0.04316		0.04454	0.04400	1963	0.04400	32.4	
1965	0.04150	0.04220	0.04280	0.04270			0.04270		0.04540	0.04070	0.04400	0.04830		0.04501	0.04597	0.04550		0.04550	32.9	
1966	0.05200	0.05230	0.04920	0.04770					0.05630	0.05110	0.05130	0.04870 0.05670	0.04547 0.05232	0.04631 0.05369	0.04766 0.05641	0.04610		0.04610	33.8	
	0.04880	0.05030	0.05070	0.05010					0.05610	0.04220	0.05510	0.06230	0.05667	0.05804	0.06068	0.05530 0.06070		0.05530	35.0	
	0.05690	0.05680	0.05650	0.05450		1968	0.05450	0.04510		0.05660	0.06180	0.06940	0.06360	0.06556	0.06878	0.06800		0.06070	35.9 37 7	
1969	0.07120	0.07020	0.06670	0.06320				0.05810	0.07960	0.06200	0.07030	0.07810	0.07394	0.07574	0.07902	0.07980		0.07980	37.7 39.8	
	0.06900	0.07290	0.07350	0.06870				0.06510		0.07180	0.08040	0.09110	0.08347	0.08698	0.09115	0.08790		0.08790	42.0	
	0.04950	0.05650	0.06160	0.06120					0.05720	0.04660	0.07390	0.08560		0.08238	0.08615	0.07700		0.07700	44 4	
	0.07320	0.06950	0.06850	0.07120					0.05250	0.04430	0.07210	0.06160		0.07796	0.08047	0.07500	1972	0.07500	46.5	
	0.08200			0.08060				0.05180 0.06090	0.08030	0.08730 0.10500	0.07440 0.08570	0.08240	0.07829	0.08034	0.08173	0.07910		0.07910	49.5	
										1. 1000C	0.00370	0 09500	0 08634	0.08748	0.09084	0.09590	1974	0.09590	54.0	

Interest Rates and Economic Indicators Worksheet

	_							High-	Prime	Federal	Corporate I	Bonds				Light	Utility		GNP	Bond-Buyer
	Treasury S	ecurities						Grade	Rate	Funds	•		Public Util	ity Bonds		Pow., Gas	Last	Rate at	Implicit	High
Vear	1 year		10 year	20 year	30 year	Lasi	Refn.	Munic.	•	Rate	(Aaa)	(Baa)	(AA)	(A)	(BBB)	Moody s	Refinance	Last	Price Defl.	Grade
	(Cor	nstant Matur	ibos)			Refinan.	Rate	(S&P)			(Moodys)	(Moodys)	(S&P)	(S&P)	(S&P)	Watd. Ave.	Year	Refin.	(1982=100)	Bands
	(1)	(2)	(1)	(1)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(9)	(10)	(10)	(10)	(11)	(12)	(5)	(13)	(14)
1975	0.06780	0.07490	0.07990	0.06200	0.07990	1975	0.07990	0.06890	0.07860	0.05820	0.08830	0.10610	0.09172	0.09499	0.10210	• •	1975	0.09970	59.3	(14)
1976	0.05880	0.06770	0.07610	0.07860	0.07610	1976	0.07610	0.06490	0.06840	0.05040	0.06430	0.09750	0.06815	0.09045	0.09638	0.06920	1976	0.08920	63.1	
1977	0.06080	0.06690	0.07420	0.07670	0.07750	1977	0.07750	0.05560	0.06830	0.05540	0.08020	0.08970	0.08443	0.08596	0.06857	0.08430	1977	0.06430	67.3	
1978	0.08340	0.08290	0.08410	0.08480	0.08490	1978	0.08490	0.05900	0.09060	0.07930	0.08730	0.09490	0.09057	0.09198	0.09477	0.09300	1978	0.09300	72.2	
1979	0.10650	0.09710	0.09430	0.09320	0.09280	1979	0.09290	0.06390	0.12670	0.11190	0.09630	0.10690	0.09969	0.10170	0.10690	0.10850	1979	0.10850	78.6	
1980	0.12000	0.11550	0.11430	0.11360	0.11270	1980	0.11270	0.08510	0.15270	0.13360	0.11940	0.13670	0.12256	0.12469	0.13560	0.13460	1980	0.13460	85.7	
1961	0.14800	0.14440	0.13920	0.13720	0.13450	1981	0.13450	0.11230	0.18870	0.16380	0.14170	0.16040	0.14670	0.14910	0.15969	0.16310	1981	0.16310	65.7 94.0	
1962	0.12270	0.12920	0.13010	0.12920	0.12760	1982	0.12760	0.11570	0.14860	0.12260	0.13790	0.16110	0.14037	0.14362	0.15312	0.14930	1982	0.14930	100.0	
1963	0.09580	0.10450	0.11100	0.11340	0.11180	1983	0.11180	0.09470	0.10790	0.09090	0.12040	0.13550	0.12012	0.12287	0.12812	0.12700	1962	0.12700		
1964	0.10910	0.11890	0.12460	0.12490	0.12410	1984	0.12410	0.10150	0.12040	0.10230	0.12710	0.14190	0.13084	0.13382	0.14087	0.12700	1963	0.12/00	103.9	
1965	0.08420	0.09640	0.10620	0.10970	0.10790	1985	0.10790	0.09180	0.09930	0.08100	0.11370	0.12720		0.11772	0.12112	0.14230	1985	0.14250	107.7	
1986	0.06450	0.07060	0.07670	0.07840	0.07780	1986	0.07780	0.07380	0.08330	0.06810	0.09020	0.10390	0.09230	0.09600	0.10000	0.09610	1986	0.09610	110.9	
1987	0.06770	0.07680	0.08390		0.08590	1987	0.06590	0.07730	0.08210	0.06660	0.09380	0.10580	0.09550	0.09860	0.10290	0.09740	1987	0.09740	113.8	
1968	0.07650	0.08260	0.08850		0.08960	1988	0.08960	0.07760	0.09320	0.07570	0.09710	0.10830		0.10210	0.10520	0.10030	1988	0.10030	117.4	
1989	0.08530	0.08550	0.08490		0.08450	1989	0.08450	0.07240	0.10870	0.09210	0.09260	0.10180		0.09720	0.09930	0.09920	1989		121.3	
1990	0.07890	0.06260	0.08550		0.08610	1990	0.08610	0.07250	0.10010	0.08100	0.09320	0.10360	4.40400	0.00/LV	0.03350	0.09820	1303	0.09920	126.3	
1991	0.05860		0.07860		0.08140	1991	0.0814									0.03020			131,5	

Other Financial Spread Information

Low End High End 0.125% 0.750% (Note 15)

Commitment Fee for Lines of Credit

Notes:

- (1) Constant maturities. Data from 1953-1962 are from the Federal Reserve Bulletin, "Annual Statistical Digest, 1978 Edition," p. 117. Data on 1962-present provided by the Federal Reserve System, Division of Monetary Affairs, January 1992.
- (2) Constant maturities. Data from 1953-1962 are from the "1991 Economic Report of the President," p. 368.
- (3) Data on 30-year Treasury Bond yields for the early part of the century are not printed in time series produced by the Federal Reserve, Moody's, Standard & Poors, or the Economic Report of the President. Generally, a "long-term" rate is listed, which aggregates yields on issues which exceed between 8 and 12 years, depending on the year in question. According to the Center for Research and Security Prices at the University of Chicago Business School, however, the U.S. Government has issued 30-year bonds since 1929. We therefore use the long-term bond data available historically, and assume that the duration of the bonds were 30-years for the purpose of imputed refinancing calculations. This assumption is a conservative one since with a few exceptions long-term bond rates after 1930 generally exceeded shorter term ones. Therefore, using short-term yields will likely understate the actual cost of funds to some degree. In addition, we assume that these 30-year notes were generally available, which we do not know was the case. This assumption is also conservative since it reduces the number of refinancings necessary during the high initiation 1980s. Finally, the error from this assumption is not likely to be very large. Between 1919 and 1952 (when data on 20-year bond yields begins), the variation on basic yields of corporate bonds of 10 versus 30 years in duration was generally less than 0.5%. Data sources are as follow: 1919-1952 are from the U.S. Department of Commerce, "Historical Statistics of the United States, Colonial Times to 1970," Series X-474 - X-491. Unweighted averages of yields, with durations of 8 years or more through 1925, 12 years or more from 1925-1934, and 15 years from 1935-1952. Data on 30-year bands after this date were provided by the Federal Reserve System, Division of Monetary Affairs in January 1992, and refer to constant maturities
- (4) The last refinancing column lists the date at which money borrowed at the date shown in the first column would have last been refinanced. This date is used to assess the refinancing risk bome by the federal government by lending for terms longer than generally available in the market. The refinancing date ignores reverse-yield curves and mid-term refinancings and assumes that the longest term bonds available at each refinancing were purchased. The longest generally available bonds were 30-year issues (see Debt Technical Appendix for more detail on this assumption). Therefore, funds borrowed in 1925 would be refinanced in both 1955 and 1985, with 1985 listed as the last refinancing date.
- (5) The refinancing rate is the yield on the longest term bonds at the time of last refinancing. The subsidy associated with these loans is measured as the difference between the rate the money was lent at, and the interest paid on bonds at last refinancing (see note 3).
- (6) Data are Standard & Poor's taken from the 1991 "Economic Report of the President," p. 368.
- Data are generally the average monthly rate, although the years 1929, 1930, 1947, and 1948 are the simple average of the range. Data are from the 1991 "Economic Report of the President," p. 368. (7) (8)
- *Economic Report of the President,* 1991, p. 368. Prior to 1975, data are the average of daily averages comprised of the "most representative rate," beginning in 1975, the weighted average of transactions is presented. (9) *Economic Report of the President," 1991, p. 368.
- (10) Public Power Bond rates are from Standard & Poor's Statistical Service, "Security Price Index Record", 1990 Edition, pp. 237-239. According to Standard & Poor, this data set uses 20-year bond issues. Although longer-term power bonds are issued, S&P does not systematically track them.
- (11) Data reflect the weighted average interest rates on new capital for light, power, and gas utility bonds from "Moody's Public Utility Manual." Includes borrowing by government-owned enterprises; Rates paid by investor-owned utilities may be higher on average, although most new municipal issues are revenue bonds, which are not guaranteed by the power to lax. This would land to reduce the spread between municipal and private borrowers
- (12) The last refinancing year is the same as described above in Note 4. Although the yield data are for 20-year issues, we conservatively assume they are for 30-years in our imputed refinancing calculations. See Note 3 for more detail on the implications of this assumption.
- (13) Data for 1929-1938 are from the U.S. Department of Commerce, "Mistorical Statistics of the United States, Colonial Times to 1970," Series E 1-22. Later data are from the 1991 "Economic Report of the President," p. 290. Earlier data were scaled from a 1958 base year to a 1962 base year and do not match the later data exactly.
- (14) Annual averages. From Sidney Homer, "A History of Interest Rates," Rutgers University Press, 1977.

Interest Rate Premium for Tax-Exempt Bonds

-/-

Value of Government Intermediation in Borrowing

							Short-Term	Debt		Long-Term	Debt	Highest Grade
Year	Corporate	Municipals	Munic /	Corporate -	Max.	Rate Reduction	6-Month	6-Month	Commercial	30-year	Moody's	Commercial
	(Moody's)	(Moody's)	Corporate	Munic.	Tax Bracket	Net of Tax	Treasury	Commercial	Minus	Treasury	Corporate	Minus
	(Aaa)	(Aaa)				Shield	80	Paper	Govit	Bonds	(Aaa)	Govit
	(1)	(2)	(2/1)	(1-2)	(3)	(4)	(5)	(6)	(6-5)	(7)	(1)	(7-1)
1971	0.0739						0.04511	0.0511	0.599%	0	0.0739	
1972	0.0721						0.04466	0.0473	0.264%	0	0.0721	
1973	0.0744						0.07178	0.0815	0.972%	0	0.0744	
1974	0.0857						0.07926	0.0984	1.91.4%	0	0.0857	
1975	0.0883						0.06122	0.0632	0,198%	0.0799	0.0883	0.0084
1976	0.0843						0.06266	0.0534	0.074%	0.0761	0.0843	0.0082
1977	0.0802						0.0551	0.0561	0.100%	0.0775	0.0602	0.0027
1978	0.0873						0.07572	0.0799	0.418%	0.0849	0.0873	0.0024
1979	0.0963						0.10017	0.1091	0.893%	0.0928	0.0963	0.0035
1980	0.1194	0.07846	65.71%	4.09%	0.46	2.21%	0.11374	0 1229	0.916%	0.1127	0.1194	0.0067
1981	0.1417	0.10423	73.55%	3.75%	0.46	2.02%	0.13776	0.1476	0.984%	0.1345	0.1417	0.0072
1982	0.1379	0.10875	78.86%	2.91%	0 46	1.57%	0.11084	0.1189	0.806%	0.1276	0.1379	0.0103
1983	0.1204	0.06800	73.09%	3.24%	0.46	1.75%	0.0875	0.0889	0.140%	0.1118	0.1204	0.0086
1984	0.1271	0.09608	75.59%	3.10%	0.46	1.68%	0.098	0.1016	0.360%	0.1241	0.1271	0.003
1985	0.1137	0.08603	75.67%	2.77%	0.46	1.49%	0.0766	0.0801	0.350%	0.1079	0.1137	0.0058
1986	0.0902	0.06951	77.06%	2.07%	0.46	1.12%	0.0603	0.0639	0.360%	0.0778	0.0902	0.0124
1987	0.0938	0.07124	75.95%	2.26%	0.34	1.49%	0.0605	0.0685	0.800%	0.0859	0.0938	0.0079
1988	0.0971	0.07357	75.76%	2.35%	0.34	1.55%	0.0692	0.0768	0.760%	0.0896	0.0971	0.0075
1989	0.0926	0.06995	75.54%	2.27%	0.34	1.49%	0.0804	0.088	0.760%	0.0845	0.0926	0.0081
		Average	74.68%	2.88%	Average	1.64%	0.0747			Ave., 1975		0.006847

Historical Studies of Spread (Note 8):

1946-68 74.1250% Prime municipals/iong governments	4.1250% F	1946-68
--	-----------	---------

1946-68 63.5417% Prime municipals/new callable utilities

Source: Homer and Johannesen, 119.

- 1952-67 71.5356% Aaa Municipals/Aaa seasoned corporate bonds
- 1967-76 70.6434% Asa Municipals/Aaa seasoned corporate bonds
- Source: Mussa and Kormendi, 66.
- (1) "Economic Report of the President," 1991, p. 368.
- (2) "Moody's Municipal & Government Manual," Municipal Bond Yield Averages, average of monthly figures. 1991, V. 2, pp. a8-a10.
- (3) Tax bracket figures assume maximum corporate rate, which dropped in the Tax Reform Act of 1986.
- (4) The "tax shield" refers to the parties of the higher interest costs that would have been deductible from taxable income, and therefore not constituted an out-of-packet expense to the barrower. The interest rate benefit net of the tax shield is (1-tax rate)(interest rate spread between taxable and tax-exempt bonds).
- (5) Economic Report of the President, 1991, p. 368.
- (6) "Economic Report of the President," 1991, p. 368.
- (7) From RATES2.WK1, previous page.
- (8) Sidney Homer and Richard Johannesen, "The Price of Money, 1946 to 1969," Rutgers University Press, 1969. Michael Mussa and Roger Kormendi, "The Taxation of Municipal Bonds: An Economic Appraisal." Washington, DC: American Enterprise Institute, 1979.
- (9) Spreads tend to be lower on longer term issues.

Historical Data on Real Rates of Return

Instrument	Period	Nominal Yie	ble	Real Yield, Pre-1	fax	Real Yield,	After-Tax	Source
		Antmetic	Geometric	Arimetic	Geometric	Antmetic	Geometric	
L-T Gov t Bonds	1926-1990	0.049	0 046	0.018	0.014	0.006	0.002	Siegel, 31
	1946-1990	0.049	0 045	0.005	-0.01	-0.011	-0.016	Siegel, 31
	1966-1981	0.028	0.025	-0.039	-0.042	-0.056	-0.059	Siegel, 31
	1966-1990	0.074	0.068	0.016	0.009	-0.007	-0.013	Siegel, 31
	1982-1990	0.157	0.149	0.113	0.105	0.079	0.073	Siegel, 31
S-T Gov't Bonds	1926-1990			0.006	0.005	-0.002	-0.003	Siegel, 31
	1945-1990			0.004	0.003	-0.008	-0.009	Siegel, 31
	1966-1981			-0.001	-0.002	-0.019	+0.019	Siegel, 31
	1966-1990			0.013	0.012	-0.005	-0.006	Siegel, 31
	1982-1990			0.037	0.037	0.018	0.018	Siegel, 31
Stocks	1926-1990	0.119	0.098			0.074	0.053	Siegel, 30; real after tax yield includes dividends and capital gains
	1946-1990	0.12	0.111			0.06	0.049	Siegel, 30; real after tax yield includes dividends and capital gains
	1966-1981	0.073	0.062			-0.009	-0.018	Siegel, 30; real after tax yield includes dividends and capital gains
	1966-1990	0.107	0.096			0.033	0.022	Siegel, 30; real after tax yield includes dividends and capital gains
	1982-1990	0.167	0.159			0.105	0.098	Siegel, 30; real after tax yield includes dividends and capital gains
L-T Corporate Bonds	1926-1990		0.052		0.002			lbbotson, 74

Notes:

1

)

(1) *L-T* refers to *Long-Term;* *S-T* refers to *Short-Term,*

Sources:

(1) Ibbotson Associates. "Stocks, Bonds, Bills and Inflation, 1991 Yearbook," Market Results for 1926-1990. (Chicago, IL: Ibbotson Associates, 1991).

(2) Jeremy Siegel. "The Equity Premium: Stock and Bond Returns Since 1802," Financial Analysts Journal, Jan./Feb. 1992, pp. 28-38.

Summary Table: Energy Shares of Capital Spending Between 1980 and 1989

Energy Type		Amount	Share of Energy	
		(\$Mils)	Cap. Spending	Comments
Crude Oil		273.042	31.47%	
Natural Gas		192,637	22.20%	
Coal		74,052	8.53%	
Solar (Off-grid	j)	356	0.04%	Includes active and passive solar and off-grid photovoltaic.
Ethanol		2,560	0.30%	
Biomass (Off-	grid)	1,163	0.13%	Virtually all wood.
Electric				
Coal-Electric	;	86,457	9.96%	
Oil-Electric		2,433	0.28%	
Gas-Electric		5,646	0.65%	
Fission-Elect	tric & Fuel Cycle	189,051	21.79%	
Hydro-Electri		5,201	0.60%	
Waste-to-End	ergy	6,491	0.75%	Electricity share only.
Geothermal-I	Electric	5,413	0.62%	
Biomass-Elec	ctric	7,663	0.88%	
Wind-Electric	:	2,070	0.24%	
Solar-Electric	•	794	0.09%	Includes solar-thermal and photovoltaic.
Fusion-Electr	ric	0	0.00%	
Efficiency				
Utility DSM, C	Capitalized	0	0.00%	Only capitalized portions are eligible for capital spending-based
End-Use Effic	., Capitalized			tax subsidies.
	Low Estimate	8,400		Excludes capitalized residential spending on
	High Estimate	16,800		efficiency, since these do not get ITCs and ACRS treatment.
	Average	12,600	1.45%	
Total Energy				
	Low Estimate	863,428		
	High Estimate	871,828		
	Average	867,628	100.00%	

t

1

1

1

ł

1

Part 1: Determination of Energy Share of Overall Capital Spending (\$Billions of Current Dollars)

Die	ining Measures of Aggregate Capital Spanding by the Pri	1960 webs Santhy, (Saa Mich	1961	1982	198 3	1964	1985	1986	1987	1968	1989	Total 1960-89 (1a)	Energy Share	Sauroe/Notes
	Al Industries Less Spending by Electric Cooperatives	286.40	324.73	326.19	321.16	373.83	410.12	399.36	410.52	455.49	507.40	3,815.20 (43.90)		(2) (2a)
	Nonresidential Fixed Investment Component of GNP (NRFI) Less Spending by Electric Cooperatives	322.80	369.20	366.70	356.90	416.00	442.90	435.20	444.90	488.40	511.90	3,771.30 4,154.90 (43.90) 4,111.00	23.01%	(3) (2a)
	Al Plant & Equipment Expenditures, plus adjustments to NRFI basis Less Spending by Electric Cooperatives	339.30	384.10	385.30	377.30	430.00	455.80	445.00	460.70	505.70	562.70	4,345.90 (43.90) 4,302.00	20.17%	(4) (2a)

Notes to Part 1;

(1) U.S. Department of Commerce, "Plant and Equipment Expenditures and Plana, Revised Estimates for 1978 to 1989," Sept. 13, 1990. Department of Commerce data were used wherever available to determine the energy share of total capital spending because we could identify no other aggregated capital spending data sources. To have the data internally consistent to the extent possible, we used Commerce breakouts of energy spending wherever possible. For spending categories not clearly disaggregated by Commerce, we had to rely on other information acurces. To have the data internally consistent to the extent possible, we used Commerce breakouts of energy spending wherever possible. For spending categories not clearly disaggregated by Commerce, we had to rely on other information acurces. These are clearly noted. The Commerce data has a number of problems which affect the accuracy of our estimates. Primarily, while they measure only sector, this includes capital investment by some non-toxpaying entities. In the energy sector, this includes cooperative utilities, which we were able to remove. However, the aggregate spending figure includes spending by cooperative financial service and telecommunications comparies, cooperative farmers and food processors, and nonprofit organizations such as hospitals and universities. No data series for tax

paying entities only was available. Given the limitations in data availability, further refinement is not feasible. However, the implicit assumption in using this measure of the proportion of energy capital spending is that the ratio of capital spending in the energy/total economy is the same for both the taxable enterprises and the tax-exempt private enterprises. The Commerce data series attempt to exclude capital

spending by publicly-owned utilities. To incorporate the range of estimates for aggregate capital investment, we generate a range of energy ahares as explained in the notes below.

(a) The energy share represents the average aggregate capital spending on energy divided by the various measures of aggregate capital spending in the economy during the 1980-89 period. The energy share of total capital spending was calculated over a ten year average for a number of reasons. First, tax benefits associated with capital spending such as investment tax credits and accelerated depreciation, are used over a number of years. Tax expenditure estimates for these provisions reflect multiple years of purchases. Second, averaging will help to reduce some of the errors associated with multiple data sources, even for the same fuel type.

(2) This measure includes all regularly-surveyed industries by the Department of Commerce. It contains some unknown portion of spending by privately-owned but tax-exempt financial service, communications, electric power, and tood-related industries. (U.S. Department of Commerce, 9/13/90). It excludes less-trequently surveyed small businesses, hospitals and educational facilities (many of which pay no taxes), farm investment, and capital costs which may be expensed.

(22) Aggregate capital investment data from Commerce includes spending by cooperative enterprises that, although privately owned, do not pay taxes. We deduct the spending by cooperative electric utilities since they are not eligible for the tax benefits we use the capital spending mix to allocate. Spending by other cooperative enterprises remain in the Commerce numbers, understating the energy share of total capital-based tax benefits. Data provided by Don Smith, National Rural Electric Cooperatives Association, 28/93.

(3) The nonresidential fixed investment measure of capital spending is slightly higher than the above measure, and includes the items excluded in Note 2, as well as net margins on purchases of used equipment and some capital that is held for a short period of time. (U.S. Dept. of Commerce, 9/13/90, Table 3).

(4) This measure adjusts aggregate Commerce investment data by including all items included in nonvesidential fixed investment. This measure is higher than the "all industries" because it includes spending by non-profit hospitals and educational facilities, as well as for-profit small businesses and hospitals. In addition, it includes farm spending, capital costs that are expensed, and the other items described in the above note. (U.S. Dept. of Commerce, 9/13/90, Table 3).

Part 2: Capital Spending on Energy Supply by the Private Sector, 1980-89 (Millions of Current Dollars)

	1980	1961	1982	196 3	1984	1965	1986	1987	1968	1989	Total, 1960-89	Note
Oil and Gas											(1)	
Exploration and Production	37,980	51,177	52,932	33,724	33,880	31,813	16.618	12,171	14,164	13,410		(2)
Other Capital Investment	7,720	11,143	10,846	9,022	7,985	8,528	6,068	6,251	8,107	8,703		(3)
Calculation of Oil vs. Gas Shares												
Percentage shares of new welts drilled, 1980-90;				OIL	68.17%	GAS:	31.83%	From O>/	AX.WK1			(4)
Crude Oil Estimate												
Crude Share of Exploration,	31,155.8	42,486.4	43,480.4	29,141.9	28,541.3	27,502.3	15,466.1	12,559.1				
Production, Other Capital Investment						27,002.0	13,400.1	12,309.1	15,183.2	15,075.5		
Oil Pipelines	1,777.0	2,052.0	1,320.0	2,456.0	1.689.0	1.137.0	435.0	733.0	400.0			(5)
Total Crude Oil	32,932.8	44,538.4	44,800.4	31,597.9	30,230.3	28,639.3	435.0 15,901.1	733.0 13,292.1	400.0	451.0 15,526.5	273,042	(2)
Natural Gas Estimate												
Gas Share of Exploration,	14,544.2	19,833.6	20,297.6	13,604.1	13,323.7	12,838.7	7,219,9	5.862.9	7,087.8	7,037.5		
Production, Other Capital Investment												(5)
Gas Ublities	3,767.0	4,037.0	4,018.0	3,013.0	3,344.0	4,109.0	3,894.0	4,033.0	4,598,0	5,260.0		
Gas Pipelines	3,642.0	4,947.0	6,070.0	4,707.0	3,971.0	2.084.0	1,309.0	1,556.0	1,659.0	969.0		(6) (2)
Total Gas	21,953.2	28,817.6	30,385.6	21,324.1	20,638.7	19,031.7	12,422.9	11,451.9	13,344,8	13,266.5	192,637	(2)
Cont: Mining	8,399.0	10,447.6	9,324.2	7,031.1	7,837.3	7,929.8	5,385.7	5,471.6	6,139.0	6,086.2	74,052	(7)

fin In		1960	1981	1982	1983	1984	1985	1986	1987	1968	1989	Total 1980-89	
tric Investment by Investor Owned I Electric Total	<u>Utilities, by Prime Mo</u>											(1)	
Generation - All Types		19,238.0	20,912.0	25,339.0	24,935.0	23,939.0	21,372.0	18,483.0	14,395.0	9,959.0	9,903.0	188,475	
Steam		7,498	7,221	7,828	5,860	5,569	4,725	4,333	4,478	3,946	4,044	55,502	
Nuclear		11,045	12,785	16,461	18,208	17,478	15,553	13,426	9,239	5,272	4,768	124,235	
Other		695	906	1,050	868	893	1,095	724	678	740	1,091	8,740	
Transmission, Distrib., Other		7,773.0	8,212.0	8,263.0	8,881.0	9,504.0	9,719.0	10,817.0	11,108.0	11,891.0	13,194.0	99,362	
investor Owned Utilities - "Other" (Capacity Additions by	Fuel (Megawatts)											
Oil .		1,238	150	25	106	18	21	4	12	66			
Natural Gas		1,031	2,025	216		247		119	268	570	663	2,304	
Hydroelectric		570	56	50	368	1,093	2,489	119	200	91	871	5,348	
Wind						0.040	6,403	0.2	C U4	31	5	4,926	
Solar						0.040		0.2			0.2	0.4	
Biomass					50.7		0.1				1.0	1.1	
Other		264		248	30.7	~	6 40					50.7	
Total IOU Capac. Additions		3,102	2,231	539	527	26 1,385	248 2,758	123	484	72 7	1,540	786 13,416	
ment of Fuels to Prime Mover							_,				1,000	13,410	
Share to Carl													
Steam to Coal Numbers to Musican		7,498.0	7,221.0	7,828.0	5,860.0	5,569.0	4,725.0	4,333.0	4,478.0	3,946.0	4,044.0	55,502.0	
Nuclear to Nuclear		11,045.0	12,785.0	16,461.0	18,208.0	17,478.0	15,553.0	13,426.0	9,239.0	5,272.0	4,768.0	124,235.0	
Other fuels assigned in proportion		during the 1980s:											(
01	17.17%	119.4	155.6	180.3	149.1	153.4	188.1	124.3	116.4	127.1	187.4	1,501,0	,
Nat. Gas	39.86%	277.0	361.1	418.5	346.0	356.0	436.5	288.6	270.3	295.0	434.9	3,483.8	
Hydro	36.72%	255.2	332.7	385.5	318.7	327.9	402.1	265.8	249.0	271.7	400.6	3,463.8	
Wind	0.00%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	400.8	3,209.2	
Solar	0.01%	0.1	0.1	0.1	Q.1	0.1	0.1	0.1	0.1	0.0	0.0		
Biomass	0.38%	2.6	3.4	4.0	3.3	3.4	4.1	2.7	2.6	2.8		0.7	
Other	5.86%	40.7	53,1	61.5	50.8	52.3	64.1	42.4	39.7	2.8 43.3	4.1	33.0	
		695.0	906.0	1,050.0	868.0	893.0	1,095.0	724.0	678.0	43.3 740.0	63.9 1,091.0	512.0 8,740.0	
ary of Electric Spanding by Fuel													
Coal-Electric													
Generation Equipment		7,498.0	7,221.0	7,828.0	5,860.0	5,569.0	4 705 0	4 644 4					
Share of T&D		3,029.5	2,835,6	2,552.7			4,725.0	4,333.0	4,478.0	3,946.0	4,044.0		(
Total, Coal Electric		10,527.5	2,635.6		2,087.1	2,210.9	2,148.7	2,535.8	3,455.5	4,711.5	5,387.9		
Oil-Electric		10,427.0	10,000.0	10,380.7	7,947.1	7,779.9	6,873.7	6,868.8	7,933.5	8,657.5	9,431.9	86,457	
Generation Equipment		119.4											(
Share of T&D			155.6	180.3	149.1	153.4	188.1	124.3	116.4	127.1	187.4		
Total, Oil-Electric		48.2	61.1	58.8	53.1	60.9	85.5	72.8	89.9	151.7	249.6		
Gas-Electric		167.6	216.7	239.1	202.2	214.3	273.6	197.1	206.3	278.8	437.0	2,433	
Generation Equipment													(1
Share of T&D		277.0	361.1	418.5	346.0	356.0	436.5	288.6	270.3	295.0	434,9		
Total, Gas-Electric		111.9	141.8	136.5	123.2	141.3	198.5	168.9	208.5	352.2	579.4		
Ession-Electric		389.0	502.9	555.0	469.2	497.3	635.0	457.5	478.8	647.2	1,014.3	5,646	
												,	(1
Generation Equipment		11,045.0	12,785.0	16,461.0	18,208.0	17,478.0	15,553.0	13,426.0	9,239.0	5,272.0	4,768.0		,
Share of T&D		4,462.7	5,020.6	5,367.9	6,485.1	6,938.9	7,072.8	7,857.4	7,129.3	6,294.7	6,352.5		
Uranium Mining		949.0	461.0	173.0	67.0	37.0	32.0	25.0	54.0	36.4	0.0		(1
Total, Finnion		16,456.7	18,266.6	22,001.9	24,760.1		22,657.8		16,422.3	11,603.1	11,120.5	189,061	(
vdro-electric								,				103,001	
Generation Equipment		255.2	332.7	385.5	318.7	327.9	402.1	265.8	249.0	271.7	400 E		(1
								200.0	2-3.0	6/1./	400.6		
Share of T&D		103.1	130.6	125.7	113.5	130.2	182.8	155.6	192.1	324 4	500 7		
		103.1 358.3	130.6 463.3	125.7 511.3	113.5 432.2	130.2 458.1	182.8 584.9	155.6 421.4	192.1 441.1	324.4 596.1	533.7 934.3	5,201	

Notes and Sources to Part 2:

(1) The energy share of total capital spending was calculated over a ten year average for a number of reasons. First, tax benefits associated with capital spending such as investment tax credits and accelerated depreciation, are used over a number of years. Tax expenditure estimates for these provisions reflect multiple years of purchases. Second, averaging will help to reduce some of the errors associated with multiple data sources, even for the same fuel type.

- (2) Capital spending on oil and gas are from the "Oil and Gas Journal" annual capital spending survey. Data here represent the oldest data set in each issue (2 years prior to the magazine year), as historical figures are sometimes revised by O&G. Spending on exploration, production, and "other" capital investment is mixed oil and gas. See Note 7 for methodology of disaggregation. Specific issues are as follows:
- Oil and Gas Journal, Annual Capital Spending Surveys 2/18/60, p. 56; 2/16/81, p. 58; 2/15/82, p. 61; 2/28/83, p. 40; 2/27/84, p. 44; 2/25/85, p. 46; 2/24/86, p. 26; 2/23/87, p. 31; 2/22/88, p. 18; 2/20/89, p. 14; 2/19/90, p. 21. (3) "Other" apending includes investments into refining, marketing cubet infrastructure, and vehicle fleets. OCS lease bonuses and investments into petrochemicals, mining, or other energy sources are excluded from this data set.
- (4) Oil and gas expenditures are disaggregated on the basis of historical shares of wells drilled, derived in O>AX.WK1. This allocation method incorporates some aspects of the relative activity in each market. However, costs, and thus investment, will depend on many other factors, such as well depth and location, and the volume of oil requiring refining and distribution infrastructure. Additional research could improve this procedure.
- (5) Shares of exploration, production, and other equal the total oil and gas investment multiplied by the estimated oil and gas shares shown in the above lines.
- (6) Data on gas utility investments are from "Gas Facts," by the American Gas Association, 1991, Table 16-1. Transmission estimates have been debuted from the Out UTL of the Land and the American Gas Association, 1991, Table 16-1.
- deducted from the Gas Ubity totals to avoid double-counting with the gas pipeline expenditures from the "Oil and Gas Journal" survey. (Based on input from Donna Barious, AGA, 1/15/93).
- (7) Capital sponding on the coal mining was derived from limited data presented in the Data Resources Inc. "Annual DRI/McGraw Hill Survey of Business Plans for New Plant and Equipment," for 1987, 1988, and 1989. We assumed that the ratio of coal mining to total mining spending would remain fairly constant over the 1980s. Then, using the DRI ratio of coal.total mining, derived coal mining estimates based on total mining estimates from the Bureau of Census. Census data was used since we could not obtain DRI data for all the 1980s, and the DRI data that was available differed significantly from the Census figures. The derivation is presented below:
 DRI Coal Mining Total Mining Ratio

Coal	Tot. Mining	Percent	
3361	5394	62.31%	*DRI Projections
3764	5694	66.10%	•
3543	5265	67.29%	
3501	5102	68.62%	
	Ave.	66.08%	
	3361 3764 3543	3361 5394 3764 5694 3543 5265 3501 5102 Ave.	3361 5394 62.31% 3764 5694 66.10% 3543 5265 67.29% 3501 5102 68.62% Ave. 66.08%

- (8) Capital spending on electric generation data are from the EEI "Statistical Yearbook of the Electric Utility Industry," 1990, Table 70. "Steam" is virtually all coal capacity (Jack Castin, EEI, personal communication, 1/12/90). "Other" includes hydro, natural gas, oil, and geothermal plants. Generation data include capitalized interest in the form of the Allowance for Funds Used During Construction (AFUDC). This is appropriate because, according to the IRS, capitalized interest in the form was eligible for tax benefits. (Rick Robinson, IRS investment tax credit specialist, personal communication, 2/3/90).
- (9) Transmission, distribution, and "other" spending are fromt the EEI yearbook, and were allocated to particular fuels in proportion to spending on generation plant. The implicit assumption is that higher spending means more plants, which require more T&D. This assumption is not always valid, such as with nuclear plant cost overruns. The "other" category includes some intangible plant which could not be disaggregated.
- (9a) From "Generator Nameplate Capacity Additions by Year, 1980-89, As of Yearend 1991," computer run provided by Elsie Bess, DOE, EIA, January 27, 1993. Includes private utilities only.
- (10) Spending classified by EEI as "other" generating plant were broken into source fuels based on capacity increases during the 1980s, as shown above. This allocation method assumes equal capital costs per unit of capacity, and therefore may understate spending on hydro.
- (11) Spending on nuclear excludes capitalized nuclear fuel, since we judged the difference between tax and service lifes to be too small to provide significant tax benefits.
- (12) Capital spending on uranium mining includes exploration, mining and miling. Data for 1988 are from EIA, "Domestic Uranium Minning and Miling Industry Viability Assessment, 1988," p. 17. Data for prior years are from the U.S. Department of Commarce, "Statistical Abstract of the United States," 1990, Table 1240.
- (13) Renewables data are presented in detail in RENEWCAP.WK1. Data are quite poor, so estimates could have a significant range of error.

Part 1: Energy Technologies Attached to the Electrical Grid

A. Geothermal

	Year	Capacity (MW)	Sauron/Notes	Capital Cost. \$Mil/M	W plant capacity
	1980	909	Rader, II-24	Low	2.4 Jenkinsetal, E1-11
	1984	1,386	Williams, 24	High	3.8 Jenkinsetal, E1-11
	1988a	2,594	Rader, II-24	Average	3.1
	19885	2,310	Williams, 24		
	1989	2,655	Note 1		
	1990	3,000	EIA '92 Outlook, 25,45		
		Capital Span	ding		
		Increase in C	apacity, 1960-1989 (MW)	1,746	
		Ave. cap. cos	t SMI/MW	3.1	
		Capital invest	ioment (\$Mils)	5,412.6	
Note	96 .				
(1)				ual, and uses the Williams 1988 surv	ey estimate,
	which was b	ased on more	rigorous survey data.		
B . 1	Wind				
	Year	Capacity (MW)	Source/Notes	Capital Cost: \$161/16	N plant expecity
	1981	10	Rader, II-54	Cap. Cost, Current	0.78 Jenkins et al. E1-11
	1984	604	Williams, 24	Cap. Cost, mid 1980s	,
	1988	821	Williams, 24		

Capital Spending

1,500 Rader, II-54

2,000 EIA 92 Outlook, 25,45

Assumptions

Increase in Capacity, 1980-1989 (MW)	1,500 installed capacity in 1960 was zero.
Ave. cap. cost \$MB/MW	1.380 Plant built through 1989 had the higher capital costs
Capital investement (\$Mils)	2,070.0

C. Solar Thermal

1989

1990

Year	Capacity (MW)	Source/Notes	Capital Cost	\$161/10W plant capacity	
1980	· 0	Note 1	Mid-1980s	2.692	Jenkins et al. E1-11
1984	22	Williams, 24	Current		Jenkins et al. E1-11
1985	44	Rader, II-40; Luz only			
1988	205	Williams, 24			
1989	194	Rader, II-50; Luz only			
	80	Sched. to come on-line in '89; Rader, II-50			
ot	274				

Tot

Capital Spanding		Assumptions
Inorease in Capacity, 1980-1988 (MW) Cap. Cost, \$Mil/MW Capital investement (\$Mils)		Installed capacity in 1980 was zero. Construction through 1988 had the higher capital costs
Increase in Capacity, 1989 Cap. Cost, SMI/MW Capital investment (SMIs)	69	Assumes plant came on line as scheduled. Plant in 1989 had the lower capital costs
Total Capital Investment (\$Mil)	712.4	

Notes:

(1) Luz represents 90% of the world's solar thermal capacity and virtually 100% of U.S. capacity. It's first plant came on line in 1984. Therefore, U.S. capacity prior to that data is assumed to be zero.

D. Waste-to-Energy

	Amount	Notes	Sources
	(SMits)		
Capital spending on waste-to-energy			
plants, 1960-88	11,117.7	(1)	Gov't Advis. Assoc. Database (Data through 1988 only)
Band Issues for Solid Waste/Resource			•
Recovery facilities, 1989	1,863.9	(2)	IDD/PSA Database
Total	12,961.6		
Estimated Share benefiting energy	50%	(3)	
Energy share of capital spending	6,490.8		

.....

(1) Includes initial capital and additional capital spending for all operating, near operating, or temporarily closed facilities during 1980-1988.

(2) The use of this as a capital spending proxy assumes that bond receipts were immediately spent, and that the facilities were not also financed with equity.

(3) Waste-to-Energy facilities serve two purposes: solid waste disposal and electricity generation. Spending has arbitrarily been split between the two.

E. Photovoltaic

Most photovoltaic is non-grid power; the grid portion is estimated in Part 2, on PV, non-grid investments.

F. Biomass - Wood Power on Electric Grid

Y	MW Capac.	Saurce		Cost, SMEAN	V of Capacity	
1980	200	Dedes # 40				
	200	Rader, II-19		Low	1.638 Sehti, 11	
1968	4,554	Rader, II-19		High	2.238 Sehti, 11	/4/92
1990	5,000	EIA, 92 Egy Ou	ntook, 45	Average	1.938	
1969 Est	4,777					
Capital Sper	ding					
Cost of Capa	city: \$ME/MW	1.938				
Capacity inc	ease (MW)	4,554				
Est. Capital S	Spending (SMil)	8,826				
Breakout of (Grid vs. Non-Grid Power					
Mix of Cape	city in 1988	MW	Pct.			
Grid Wood	Energy	3954	87% Includes	utilities and comme	rcial facilities hooked	into the power grid
Nan-Grid V	Vood Energy	600	13% Data on I	breakout of grid/no	n-grid from Rader, II-1	9
Wood Energy	Capital Spending Mix		şmi			
	Grid		7,663			
	Non-Grid		1,163			

Part 2: Capital Spending on Non-Grid Renewables

A. Solar - Thermal Water Heaters and Passive Construction

Year	Capacity (Quads)	Source/Notes		Cost, \$MilBlu		
1986 - Thermal	0.017	Rader, 11-43		Low	(D Rader, II-40
1986 - Building	0.035	Rader, II-43; note 1		High		D Rader, II-40
1986 - Total	0.052			Ave.	9	5
1990	0.050					
Capital Spanding				Assumptions		
Increase in Capacity, 1	980-1989 (Quads)		0.050	Installed capacity in 19	60 was zero; E	IA numbers accurately measure passive solar contrib.
Mil Btu/Q	uad		1.00E+09		•	,
Capac. Ir	crease, Mil Blu		5.0E+07			
Ave. cap. cost; \$/Mil Bi	tu		5.000	Ave. cost of avail, tech	nologies is a fai	ir proxy for the mix of technologies installed.
Capital investement (\$	Mils)		250.0		-	

Notes:

(1) Capacity of passive solar in 1986 was estimated to range from .02-.05; we used the average.

B. Biomass - Ethanol

Years	Capacity (Mil. Gals)		Capital Costs of Ethanol Production	
1979 1989		Alcohol Fuels 1989 AR, 2 Alcohol Fuels 1991 AR, 2	Ave. Dollars/gallon of plant capacity	\$2.00 (USDA, p. 27)
Capital Spend	ling		Assumptions	

Increase in Capacity, 1980-1989 (Mil Gals) 1,280 Plants that closed during the 1980s didn't get to use their tax benefits. Ave. cap. cost: \$/gal of capacity \$2.00 Ave. cost of avail, technologies is a fair proxy for the mix of technologies installed, Capital investement (\$Mils) 2,560.0

C. Photovoltaic

/

Year	MW Capac.		Sauroe		Cost/kW of Capacity	
1982 1989	1 13	Grid	Rader, II-36 Rader, II-36		Est 1995 Late 1980s	3,172 Jonkins, E1-12 4,175 Jonkins, E1-12
Capital Spen	17 ding	Non-grid			Production breakthrough, late Pre-breakthrough est.	1980s, reduced system costs by 50% (Rader, II-34) 6,263
Capacity Inc	icity: SMil/MW 'ease, Grid (M 'ease, Non-Gri	•			Assumes infrastructure built at l Assumes no PV capacity in 198 Assumes no PV capacity in 198	0
Spending, Gi	id PV (SMil)			81.4		

D. Biomass - Wood Energy

Spending, Non-Grid PV (\$Mil)

Non-Grid Wood Energy

Residential use

1,163 From Part 1F above

546

106.5

0 Residential investments into wood consumption, unlike similar business investments, are generally ineligible for tax subsidies for capital.

Part 3: Demand-Side Management Programs and Energy Efficiency

A. Utility Demand-Side Management Programs

	Load Reductions			DSM inc	incremental	Cost			
	Year	Ave. Peek	Power Saved	Spending	Peek MW	MW Saved	Source		
		(MW)	(Mil.kWh)	(SMil)	Saved	(\$Mil)			
						(Z)			
	1986	21					OTA, 58		
	1989	13,331	14,776	886.7			Prete et al., 27		
	1990	16,700	17,029	1,205.7	3,369	0.36	,		
Esti	mated load red	uctions, 1980		0	Assumes that	since only 21	MW in 1986, there were zero in 1980		
Esti	nated load red	uctions, 1989		13.331			1000, Plate wate 2010 (11130)		
	Net Change			13,331					
	East Coast Shi	CIARA							

Estmated load reductions, 1980	0	Assumes that since only 21 MW in 1986, there were zero in 1980.
Estimated load reductions, 1969	13,331	,
Net Change	13,331	
Est. Cost, \$Mil/MW reduced	0.36	From above
Est. Tot. DSM spending	4,771	

Notes:

(1) DSM spending is generally expensed and therefore does not benefit from capital-spending based tax benefits.

(2) The cost/MW saved figure is equal to the increase in average peak MW saved between 1989 and 1990, divided by the incremental cost This cost is assumed constant throughout the 1980s and used to derive an estimate of total DSM spending.

B. Private Sector Investments into Energy Efficiency, 1989

Data on private sector investments into energy efficiency are highly uncertain. This is due both to a lack of data collection, as well as to measurement difficulties regarding the efficiency component. Other when efficiency numbers are reported, there are two errors. First, total spending on efficient appliances or upgrades is counted, rather than simply the incremental cost over the "regular" appliance. Second, new purchases may be made for multiple reasons, of which improved energy efficiency is but one. For example, new machine tools may be more energy efficient, faster, more precise, and computer-linked to a computer-aided manufacturing system. Ascribing all of the incremental costs to energy efficiency of such a purchase would be incorrect. Thus, we are left with numbers that are really simply educated guesses. Future research to improve this data is necessary.

incremental investments into Energy Efficiency

	Low	High	Est %				
Sector	Estimate	Estimate	Capitalized	Notes			
			(2)				
Industrial			.,				
Private Spending	2,000	4,000	40.00%				
DSM Share	177	177	0.00%	(1)			
Total	2,177	4,177		• •			
Total Capitalized	800	1,600					
Commercial							
Private Spending	1,000	2,000	40.00%				
DSM Share	177	177	0.00%	(1)			
Total	1,177	2,177		(.,			
Total Capitalized	400	800					
Residential							
Private	1,500	2,500					
Retrofit share	80%	80%	25.00%	(3, 4)			
New Construct, Share	20%	20%		(3)			
DSM Share	532	532	0.00%	(1)			
Total	2,032	3,032	0.007	(1)			
Total Capitalized	525	875					
Tot. Capitalized Effic.	1,725	3.275					
Est. Spending, 1980-89	•	Sectors				Comm. & Indust. Sector	Comm. & Indust, Sector Residential S
1980-84 and 1989	10,350	19,650		(5)	7,200		
1985-1988	1,725	3,275			1,200		-,
Total	12,075	22,925		(5)			· · · · · · · · · · · · · · · · · · ·
Notor	12,010				8,400	8,400 16,800	8,400 16,800 3,675

Notes:

(1) DSM shares are based on DSM spending in 1989 from Part 3A, with 20% each going to the industrial and commercial sectors and 60% going to the residential sector. Shares based on Alliance judgment. A number of energy efficiency experts with

whom we spoke mentioned that utilities regularly expense DSM costs. These expenditures, therefore, would not benefit from capital subsidies.

(2) Efficiency improvements from changes in management practicies, or from inexpensive capital investments (e.g., thermostats) which are expensed and therefore ineligible for capital subsidies account for the 40% capitalization share. This figure is based on conversations with a series of corporate energy managers.

(3) Retrofit and new construction shares of residential efficiency improvements based on work done by Bion Howard at the Alliance to Save Energy

(4) The capitalized share of housing retrofits is lower than for the other sectors since many of the improvements are paid for with cash or credit. Only the improvements

financed with home equity loans are eligible for housing tax benefits. (5) Efficiency investments vay depending on energy prices and other concerns. Scending was high through other 1004 does to be an eligible energy of the second sec

(5) Efficiency investments vary depending on energy prices and other concerns. Spanding was high through about 1984 due to high energy prices, and began to pick up again in 1989 due to environmental concerns. Spending between 1985 and 1988 was low after energy prices collapsed, and is assumed to equal 25% of the prior level.

Part 4: Summary of Capital Investments

Electrical Grid-Related Spending		Dispersed Renewables			
	\$Millions		\$Millions		
Geothermal	5,413	Solar - Thermal & Passive	250		
Wind	2,070	Photovoltaics	106		
Solar Thermal	712	Total Solar - Non-Grid	356		
Photovoltaics	81	Biomass - Ethanol	2,560		
Solar-Grid Total	794	Biomass - Other	1,163		
Waste-to-Energy	6,491		Low	High	
Biomass	7,663	End-Use Effic Capitalized	8,400	•	Excludes capitalized residential spending, which
Utility DSM - Total	4.771	Effic. Including Residential	12,075	22,925	
Utility DSM - Capitalized	0	Tot. Renewables and Efficiency	34,909	43,309	

Sources;

(1) Government Advisory Associates, *1988-89 Resource Recovery Database,* 1989.

(2) IDD/PSA Municipal Bond Issue Database, New Bond Issues for Energy. Data run of May 1992.

(3) Jenkins, Alec, et al. "Technology Characterization - Final Report," (CA: California Energy Commission), Nov. 22, 1992.

(4) Prete, Lewrence, Janet Gordon, and Linda Bromley. "Electric Uility Demand-Side Management." Bectric Power Monthly (DOE, EIA), April 1992.

(5) Rader, Nancy. "Power Surge: The Status and Near-Term Potential of Renewable Energy Technologies," (Wash., DC: Public Citizen, May 1989).

(6) Sehi, Prab. California Energy Commission, personal communication, 11/4/92.

(7) U.S. Department of Agriculture, Economic Research Service. "Ethanol: Economic and Policy Tradeoffs," April 1968.

(8) U.S. DOE, Energy Information Administration. "Annual Energy Outlook 1992." pp. 25, 45.

(9) U.S. DOE, Energy Information Administration. "Estimates of U.S. Biofueis Consumption, 1990," pp. viii, 6.

(10) U.S. DOE, Office of Alcohol Fuels. "Annual Report on the Use of Alcohol in Fuels," for the years 1988-1991.

(11) U.S. Office of Technology Assessment. "Energy Technology Choices: Shaping Our Future," July 1991.

(12) Wilkams, Susan. "Renewables at a Crossroads," independent Energy, November 1969, p. 24

Energy Sector Use of Transportation Infrastructure

Energy Commodity Shipments Via Rail

Code	Product	Shipments by V	olume (Carloads)	Shicments b	Value (Shilions)	
		1990	% Share	1990	% Share	
11	Coal	8,460,496	27,13%	7,106.5	23.75%	
13	Crude Petrol & Natural Gas	40,188	0.13%	34.2	0.11%	
291	Petroleum, refined oil products	573,895	1.84%	252.0	0.84%	Evolution inhumation allo annual and a state
2912	Liquified Petroleum Gases & Coal	156,392	0.50%	212.3	0.71%	Excludes lubricating dils, asphalt, and code 2912
29911	Coal and coke briquets	2,982	0.01%	3.4	0.01%	
29913	Petroleum coke, excl. briquettes	124,313	0.40%	118.7	0.40%	
29914	Coke from coal	235,986	0.76%	160.0	0.53%	
361	Electrical trans, & distr. equip.	2,895	0.01%	12.0	0.04%	
364	Electrical lighting & wiring equip.	9,722	0.03%	8.6		
	Total, All Shipments	31,185,671	0.0074	29,928.4	0.03%	Makes and the base of the second s
				23,820.4		Value total includes shipments of fractional carloads
	Totals by fuel type					
	Coal	8,777,660	28,15%	7,376.1	24.65%	Induster ender 11, 20011, 20014, and the stores
	Oil	796498	2.55%	493.9	1.65%	Includes codes 11, 29911, 29914, and 1/2 of 2912
	Natural Gas	20094	0.06%	17.1	0.06%	Includes codes 291, 29913, and 1/2 of codes 13 and 2912.
	Electricity - General	12617	0.04%	20.6		Includes 1/2 of code 13.
	Total, Energy-Related		30.81%	20.0	0.07%	Includes cades 361, 364
	,		30.01%		26.42%	

Notes:

(1) Volumes are total freight traffic in carloads, since volume rather than weight generally limits rail transport. AAR data sums transfers between lines,

so total freight figures may include some double-counting of shipping volumes.

(2) Values reflect gross freight revenues.

Source: Association of American Reiroads, "Freight Commodity Statistics, Annual," 1990.

Energy Commodity Shipments Via Water, 1989 (Millions of Tons)

		c	ceanborne Comm	N CO				
Code	Product	Imports	Exports	Total	Constwise	Lakowise	inland Waterways	Total Domestic
	Total, All Commodities	589.5	448.4	1,037.9	302	109.1	606	1017.1
Shipments	of Oil							
1211 2911		298.8	0.1	298.9	132.2		45.9	178.1
2912		19.8	1,9	21.7	43.7	0.6	32.0	76.3
2913	Kerosepe	0.0	0.0	0.0	7.1	0.1	4.7	11,897
2914	Distillate Fuel Oil	3.5	1.3	4.8	0.6	0.0	0.8	1.405
2915	Residual Fuel Oil	12.9	4.2	17.1	24.3	0.4	21.5	46.2
2913		42.8	13.2	56.0	28.2	0,4	38.8	67,4
2320	Cake, Petroleum Cake	3.1	17.5	20.6	Q.1	0.2	6.2	6.5
	Oil Share (1/2 of total)	1.6	8.8	10.3	0.1	0.1	3.1	3.25
	Total Oil	379.4	29.5	408.8	236.1	1.6	146.8	384.6
	Oil % of Tot. Shipments	64.35%	6.57%	39.39%	78.20%	1.47%	24.22%	37.81%
Shipments	of Coal							
1121	Coal and Lignite	24	98,7	101.1	12.8	19.2		
2920	Coke, Petroleum Coke	3.1	17.5	20.6	0.1		166.8	198.8
	Coal Share (1/2 of total)	1.6	8.8	10.3		0.2	6.2	6.5
	Total Coal	4.0	107.5	111.4	0.1	0.1	3.1	3.25
	Coal % of Tot. Shipments	0.67%	23.96%	10.73%	12.9 4.25%	19.3 17.69%	169.9 28.04%	202.1 19.87%

Source: U.S. Army Corps of Engineers, "Waterborne Commerce of the United States, 1969," National Summary, Table 2.

		(000 1104	5 1)			GNP implicit		
		Nuciear	Nuclear					Price Dell.	Deta	GNP
	Year	Fission	Fusion	Foesi	Renewables	Efficiency	Total	(1982=100)	Year	inflator
		(2)	(2)	(3)	(4)	(4)		(5)	(6)	(7)
	1950	16.4	0.0	96.2	0.0	0.0	112.6	23.9	1950	5.285
1951		25.7	0.0	91.6	0.0	0.0	117.2	25.1	1951	5.032
1952		31.2	0.0	90.1	0.0	0.0	121.3	25.5	1952	4.953
1953		49.3	0.0	90.7	0.0	0.0	140.0	25.9	1953	4.876
1954		90.8	0.0	80.7	0.0	0.0	171.4	26.3	1954	4.802
	1955	138.8	0.0	55.7	0.0	0.0	194.6	27.2	1955	4.643
1956		247.7	32.4	86.7	0.0	0.0	366.8	28.1	1956	4.495
1957		423.2	50.3	91.6	0.0	0.0	565.1	29.1	1957	4.340
1958		629.8	84,6	159.9	0.0	0.0	874.3	29.7	1958	4.253
1959		767.4	149.6	130.0	0.0	0.0	1,047.0	30.4	1959	4.155
	1960	996.5	131.2	128.8	0.0	0.0	1,256.5	30.9	1960	4.067
1961		1,143.6	121.8	145.3	0.0	0.0	1,410.8	31.2	1961	4.048
1962		1,076.1	99.0	144,9	0.0	0.0	1,320.0	31.9	1962	3.959
1963		1,034.6	102.1	303.7	0.0	0.0	1,440.4	32.4	1963	3.898
1964		1,135.5	87.9	245.7	0.0	0.0	1,469.1	32.9	1964	3.839
	1965	1,116.9	87.4	133.8	0.0	0.0	1,338.1	33.8	1965	3.737
1966		1,002.8	87.0	128.1	0.0	0.0	1,217.9	35	1966	3.609
1967		1,005.1	88.3	199.1	0.0	0.0	1,292.6	35.9	1967	3.518
1968		1,121.0	92.8	130,0	0.0	0.0	1,343.7	37.7	1968	3.350
1969		960.9	95.5	155.8	0.0	0.0	1,212.2	39.8	1969	3.173
	1970	844.1	95.0	151.9	0.0	1.5	1,092.5	42	1970	3.007
1971		856.2	92.4	214.2	0.0	6.3	1,169.1	44.4	1970	2.845
1972		967.2	98.1	287.6	6.5	14.9	1,374.4	46.5	1972	2.716
1973		1,039.4	103.7	0.0	0.0	0.0	1,143.1	49.5	1982	1.263
1974		1,204.1	139.2	191.7	50.4	3.7	1,589.1	54	1962	1.263
	1975	1,384.2	240.0	313.7	164.9	12.3	2,115.1	59.3	1962	1.263
1976		1,954.4	410.1	712.7	405.7	99.3	3,562.1	63.1	1962	
1977		2,006.7	595.4	1,008,1	634.8	296.2	3,362.1 4,541.1	67.3		1.263
1978		1,850.8	483.1	1,264.6	925.8	404.9	•		1982	1.263
1979		1,752.8	565.3	1,216.3	1,062.3	540.4	4,929.2	72.2	1982	1.263
	1980	1,635.5	626.4	1,092.0			5,157.1	78.6	1982	1.263
1981	1000	1,527.3	566.7		1,070.9	512.3	4,937.1	85.7	1982	1.263
1982		1,342.2	546.5	1,242.0 228.7	959.5	406.7	4.702.3	94	1982	1.263
1983		1,029.3	571.3	269.1	347,3	110.1	2,574.9	100	1982	1.263
1984		885.0			308.7	136.5	2,315.0	103.9	1982	1.263
1004	1985	680,1	543.3 486.1	323.8	241.6	177.7	2,171.5	107.7	1982	1.263
1986	1900	649.9		338.5	227.1	198.2	1,930.0	110.9	1982	1.263
1987			398.5	454.6	187.6	182.4	1,872.9	113.8	1982	1.263
1988		646.5	369.0	476.3	155.5	166.3	1,813.7	117,4	1982	1,263
1989		604.7 609.0	347.6	567.6	122.1	158.3	1,800.3	121.3	1982	1.263
1909	1000	608.8	334.4	570.2	115.4	160.0	1,788.9	126.3	1982	1.263
1001	1990	574.8	319.0	841.0	109.1	183.0	2,027.0	131.5	1982	1.263
1991		226.5	203.5	629.9	149.0	211.0	1,420.0		1982	1.263
1992		336,7	337.1	859.3	257.3	325.6	2,116.0		1982	1.263
1993	'93 Approp.	311.5	339.7	665.2	261.3	411.9	1,990.6		1982	1.263
	Total	37,932.0	10,121.5	16,608.6	7,782.8	4,719.4	77,164.4			
	% - Al Years	49.16%	13.12%	21.52%	10.09%	6.12%	100.00%			
	% of 1989	34.03%	18.70%	31.88%	6.45%	8.95%	100.00%			

Historical Spending on Energy Research and Development, by Energy Type (Millions of 1989\$ - See Note 1)

Notes:

(1) This table was constructed using a number of sources. As a result, not all data are consistent. Data from 1973-1991 are from Sissine, and include DOE spending only. Data for earlier years include multiple federal agencies. Data for 1989 may not match our estimates for DOE exactly due to different decisions on

specific programs and different classifications. Sissine data includes separate categories for spending on electricity,

energy storage, and environment. While these areas may be directly linked to particular fuels, there was not enough detail with which to allocate.

Therefore, these categories are excluded from the totals shown here.

(2) Data prior to 1973 are from Bowring, p. 31. Data from 1973 to the present are from Sissine. Military reactor R&D is excluded.

(3) Fossil includes spending on fossil R&D and clean coel research. Data prior to 1973 are from Battelle, pp. 162 and 192, and include spending by DOI, EPA, ERDA, Coast Guard, and NSF. Data from 1973 to present from Sissine and includes DOE spending only.

(4) Data includes both supply and end-use efficiency and all renewables. Data prior to 1973 are from NSF, p. 41. Post-1973 data are from Sissine.

(5) GNP data are from RATES2.WK1, derived from the 1991 "Economic Report of the President," p. 290.

(6) Data year refers to the base year of the raw data. All Sissine data were in 1982\$ (converted to 1989\$ here).

(7) GNP inflator values are equal to the GNP Price Deflator in 1989 divided by the GNP Implicit Price Deflator in the data year. This value was used to convert nominal dollars to constant 1989\$.

Sources:

(1) Joseph Bowring, "Federal Subsidies to Nuclear Power: Reactor Design and the Fuel Cycle," (Washington, DC: Energy Information Administration of DOE, March 1980). Pre-publication draft.

(2) B.W. Cone, et al. "An Analysis of Federal Incentives Used to Stimulate Energy Production," (Richland, Washington: Battelle Memorial Institute, December 1978).

(3) National Science Foundation, "An Analysis of Federal R&D by Function, FY 1969-1977," pp. 23-41

(4) Fred Sissine. *Energy Conservation: Technical Efficiency and Program Effectiveness.* (Washington, DC: Congressional Research Service, Jan. 6, 1992), p. 19. CRS IB85130; and 10/23/92, CRS IB92062, p. 4

CONTRIBUTION TO RADIATIVE FLUX CHANGES (LATE 1980s)

	Total Program	Total Energy	Coal	Oi	Gas	Electric. Oil	Electric. Coal	Electric. Gas
Relative Shares of Fosail Fuels Used in the U	S. for Electricity		75.1 8%	10.41%	13.57%			
Carbon Dicade	66,00%	50.16%	21.12%	20,45%	8.58%			
Contribution Shares to CO2 loading		50.16%	5.24%	18.33%	7.42%	2,13%	15,88%	1 16%
Methane	17.00%	3.40%			3.40%			
Primarily natural gas; allocated on basis of gas	used for electric vs. us	sed via end-user.						
Contribution Shares to Methane Loading		3.40%			2.94%			0.46%
Chierofluerocarbons	12.00%	0.00%						
Nitrous Oxide	5.00%	0.80%						
Contribution Shares, from above								
Utility Contribution		0.28%				0.01%	0.27%	0.00%
Automobile Contribution (oil)		0.34%		0.34%				0.0170
Remainder split between oil & coal		0.17%	0.09%	0.09%				
Net Contribution to NOx		0.80%	0.09%	0.43%	0.00%	0.01%	0.27%	0.00%
Overall Energy Contribution to Globel Warming		54,36% 54,3 6 %	5.33%	18.76%	10.35%	2.14%	16.15%	1.63%

ources and Notes:

١.

1) Fossil fuel shares of electricity from EIA, Monthly Energy Review, 2/90, p. 5

2) Contributions to radiative flux changes data from John Holdren, "Population and the Energy Problem," in Population and Environment. A Journal of Interdisciplinary Studies, V. 12, #3, Spring 1991, pp. 231-255, John Holdren, "Energy in Transition," Scientific American, September 1990, pp. 157-163.

3) Breakout of lossil fuels used in the electricity sector was done using the percent of particular fuels consumed by utilities.

ENERGY SHARE OF TOXICS EMISSIONS

Releases to Various Media, Millions of Pounds in 1989

	Sector	Air	Water	Land	Underground	Other	Total
Petroleum		71	5	3	38	27	145
Chemical		777	111	125	1,092	723	2,827
Total		2,417	188	462	1,181	1,553	5,800
	Petroleum Sector as % of Total	2.95%	2.87%	0.69%	3.22%	1.75%	2.50%

Notes:

(1) TRI data is an approximation of releases, but contains volume information rather than toxicity. In addition, the Office of Technology Assessment has has estimated that up to 95% of toxic releases do not appear in the Toxic Release Inventory. (Cited in GAO, 26).

Sources:

(1) U.S. EPA, Toxic Release Inventory 1969 data, in Citizens Fund, "Manufacturing Pollution: A Survey of the Nation's Toxic Polluters," July 1991.

(2) U.S. GAO. "Toxic Chemicals: EPA's Toxic Release Inventory is Useful but Can Be Improved," June 1991. GAO/RCED-91-121.

MIX OF UNDERGROUND STORAGE TANKS (USTs)

·	# Tanks	Pct*	Source
	(000s)		
Petroleum USTs, other than gasoline stations	651.0	46.50%	Federal Register (FR), 4/17/87, 12795
Petroleum USTs, retail gasoline	695.0	49.64%	FR. 4/17/87, 12792
Chemical storage	54.0	3.86%	FR, 2/9/88, 3819
Total Regulated Universe	1,400.0		
Home heating oil	1,000.0		Low est.; currently unregulated
Total Percentage of Tanks Holding Oil		96.14%	,,, , _

*Percentages exclude the currently unregulated home heating oil tanks, since they do not require EPA effort.

Sources: "Underground Storage Tanks Containing Petroleum; Financial Responsibility Requirements," Federal Register, 4/1/7/87. "Underground Storage Tanks Containing Hazardous Substances; Financial Responsibility Requirements; Advance Notice of Proposed Rulemaking," Federal Register, 2/9/88.

HAZARDOUS WASTE

Industries with Highest Average Number of Superfund National Priority List Sites per Company

industry	Ave. NPL Sites/Firm	Tot. NPL Sites for Industry
Automobile	27.0	82.0
International Oil	27.0	136.0
Chemical	22.0	246.0
Pollution Control	20.0	78.0
Conglomerates	17.0	87.0
Domestic Oil	13.0	154.0

Source: Investor Responsibility Research Center, "Corporate Environmental Profiles," 1992, p. 39.

HIGHEST PENALTIES ASSESSED FOR VIOLATING ENVIRONMENTAL LAWS, 1987-1989 (\$Millions)

Law Violated	Domestic	Oi	International O	1	Oil Well 6	quip. & Serv.	Elect	Equip.	Electric	Cos.	
	\$Mēs	Top 10 Rank	SMil s	Top 10 Rank	\$Mils	Top 10 Rank	SMis	Top 10 Rank	\$Mis	Top 10 Rank	Page
Resource Conservation and Recovery Act	10.6	1.0	9,8	2			0.6	10			
Clean Air Act	2.7	4.0	1.2	8			0.0	10			54
Clean Water Act	0.9	3.0	1.6	1			0.1	10			56
Safe Drinking Water Act	0.5	1.0	0.0	4	0.0	6	•.•	ιψ.			•
Toxic Substances Control Act and Federal Insecticide,						•					61
Fungicide, and Rodenticide Act	0.1	6.0					0.1		0.1	-	
Atomic Energy Act Assessments					0.0		0.0	-		/	62
Occupational Health and Safety Admin. Violations	0.2	6.0			0.0	•	0.0	3	7,9	1	64
Mine Salety and Health Administration Penalties	-	Industry distributio	m is based on a	wnership of co	al mining op	erations.	0.1	8			65

Notes:

(1) Classification by industry is crude. Penalties assessed on conglumerate's energy operations will not always be reflected in the total penalties shown for the energy sectors listed above. The Mine Safety and Health Administration illustrates this point clearly. Virtually all assessments are against coal mines, although the industrial classifications of the corporate parents is much more diverse.

Source: Investor Responsibility Research Center, "Corporate Environmental Profiles," 1992, pages shown in table.

FEALTH

٦.

Air Pollution: Contributions to Cancer

	Total	Energy Share	Oi	Coal	Biomass	Notes
Motor Vehicles (oil)	56.009	4 <u>56.00%</u>	56.00%			
Woodsmoke (biomass)	4.00	· 4.00%			4.00%	
Gasoline Marketing (oil)	3.005	4 3.00%	3 00%			
Coal & Oil Combust. (1/2 oil; 1/2 coal)	1.005	6 1.00%	0.50%	0.50%		
Secondary Formaldehyde (30% oil)	7.00	6 2.10%	2.10%			30% is associated with motor vehicle use
Other (non-energy rel.)	29.00	6 0.00%				
	Total 100.00%	6 66.10%	61.60%	0.50%	4.00%	

<u>ource:</u>

.1

U.S. EPA, "Strategic Plan for EPA's Toxic Air Poliutant Program," November 29, 1989.

Prepared by the Office of Air Quality Planning and Standards.

Externalities and the Cost of Regulation: Do We Clean Too Much or Clean Too Little?

Calogory	Cost/Year, Billions Low Estimate	of 1989 5 High Estimate	Notes	Comments or Study Cited	Source Used
The Partial Cost of Not Cleaning Up:					
Emissions from Electricity Generation					
Coal	14.9	73.0	(4)	Compilation	Yim, Evans, and Wilson; GAO/RCED-92-13
Oil .	27	6.4	(4)	Compilation	Yim, Evans, and Wilson
Natural Gas	1.7	3.3	(4)	Compilation	Ym, Evans, and Wilson
Nuclear	0.1	0.8	(4)	Compilation	Ym, Evans, and Wilson
All Automotive Air Pollutants	4.6	200.0		DeLuchi et al; Sperling and DeLuchi	Cannon; MacKenzie
Poliution from Agriculture				Contrast of the second	
Erosion, Offsite Impacts	2.2	8.6		Clark et al; USDA (1987)	Proj. '88, Rnd. I; NRC (1989)
Erosion, Onsite Impacts	0.5	19.4		NRC (1989); Pimental; USDA (19	
Honeybee Industry Damage from Pesticides	0.2	0.2		Pimental (1980)	NRC (1989)
Air Toxics	3.0	3.0	(5)		GAO/RCED-91-143
Total Costs for Environmental Problems Listed	29.9	314.7		1	
Total Global Costs of Stratospheric Ozone Depletion		\$6.3 trillion by 2075	without c	- hemical phaseout	EPA, Ozone, p. 3
The Cost of Cleaning:					

All Federal Environmental Regulation Aggregate Pollution Control Costs	89.3 104.7	89.3 104.7	Hopkins EPA, Cost of Clean	Hopkins EPA, Cost of Clean, 2-2
Examples of Cost-Increasing Regulation (Note 3) Oil Overcharge Funds (SMillions)	293.4	293.4	Taxes oil; benefits effic.	Other Interventions Chapter
Gas Guzzler Tax (\$Millions)	109.7	109.7	Taxes large cars	Tax Expenditures Chapter
Auto Fuel Efficiency & Emissions Standards (\$Milions)			•	
Notes	2,848.5	15,220.4	increases car price	GAO/RCED-92-100; Greene and Liu

Note:

(1) Total cost of pollution shown above does not include all pollution problems. For example, costs of global dimate change, stratospheric ozone depletion, forest losses and water pollution from excess timbering, and many others are not included.

(2) Estimates for both categories should be taken with a grain of salt. The assumptions one makes about the value of damage to human health, and especially the discount rate chosen to convert future damanges into present costs, can dramatically affect the resultant cost or benefit. Further, all figures are total, not marginal costs/damages; therefore they provide any information on the optimal control level.

(3) The cost-increasing regulation is included in the overall estimate for the cost of environmental regulations.

(4) This data was provided as a cost per kilowatt hour and converted to annual totals using 1989 net generation data.

(5) The source ascribed 3,000 additional fatal cancers each year to air toxics, a \$3 billion cost at \$1 million/life. While some air toxics come from power plants and refineries, most do not. Thus, double counting should not be significant.

Sources of Citations and Reference:

(1) Cannon, James. "The Health Costs of Air Pollution: A Survey of Studies Published 1984-1989," Pre-Publication Edition. (Washington, DC: American Lung Association, 1990).

(2) Clark, E.H., J. Haverkanmp and W. Chapman. "Eroding Soils, the Off-Farm Impacts," (Washington, DC: The Conservation Foundation, 1985).

(3) DeLuchi, Mark et al. "A Comparative Analysis of Future Transportation Fuels," (Berkely, CA: Institute of Transportation Studies, UCAL-Berkely, Oct. 1987).

(4) Greene, David and Jin-Tan Liu. "Automotive Fuel Economy Improvements and Consumers' Surplus," Transportation Res.-A., Vo. 22A, #3, PP. 203-218, 1988.

(5) Hopkins, Thomas. "Cost of Federal Regulation," in "Regulatory Policy in Canada and the United States," Conference Proceedings, Rochester Institute of Technology, May 1992, pp. 3-6.

(6) MacKenzie, James, Roger Dower and Donald Chen. "The Going Rate: What it Really Costs to Drive," (Washington, DC: World Resources Institute, June 1992).

(7) National Research Council. "Alternative Agriculture," (Washington, DC: National Academy Press, 1989).

(8) Pimental, David, et al. "Environmental and Social Costs of Pesticides: A Prefiminary Assessment," Oikos 34: 127-140, 1980.

(9) "Project 88: Hamessing Market Forces to Protect Our Environment," Washington, DC: Dec. 1988.

(10) Sperling, Daniel and Mark DeLuchi. "Tranportation Energy Futures," Annual Review of Energy, 1989. 14: 375-424.

(11) U.S. Department of Agriculture, * Agricultural Resources - Cropland, Water, and Conservation - Situation and Outlook Report,* AR-8. Economic Research Service, 1987.

(12) U.S. EPA. "Environmental Investments: The Cost of A Clean Environment," Summary, Dec. 1990.

(13) U.S. EPA. "Strategic Plan for Ozone Depletion," November 28, 1989.

(14) U.S. GAO. "Air Pollution: EPA's Strategy and Resources May Be Inadequate to Control Air Toxics," June 1991. GAO/RCED-91-143.

(15) U.S. GAO. "Motor Vehicle Regulations: Regulatory Cost Estimates Could be Improved," July 1992. GAO/RCED-92-100.

(15) Ym, Man-Sung, John Evans, and Richard Wilson. "Health and Environmental Rieks of Energy Systems," (Boston, MA: Harvard School of Public Health, 1991).

Part 1: Summary of Subsidy intensity by End-Use in 1989

			Consumption	E						Price in 1969	8			
	Fuel	Subeidy	input I				Subsidy/Un	Subsidy/Unit Energy Output	ulput		5		Subsity as a %	
		(9 75)	(Oued)	(Dueds) (3)	Standard Units (4)	쿻	NAMA tu	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۴	\$imBtu (5)	\$/Standard Unit 20	d Unit	of Market Price	
	Electricity	:		E	2					2	íc)			
	Coal	7399.9	15.99	5.25	1554	bii Kwh	S1.41	0.4	0.476 cents/kWh	_				
	OI	646.7	1.69	0.56	158		\$1.16	40	0 409 cente/Wh					
	Natural Gas	996.2	2.87	16.0	267		\$1.06	0379		z _				
	Fission	10578.9	5.68	1.81	53		55 A4	0006						
	Hydro	623.4	2.88	0.9	265		\$0.69	0.235						
	Ave., All Non-Renew. Electric.	20245.1	29.11	346	2773		\$2.14	0.730		h 18.18	6.47	cents/kWh	11.28%	*
	Direct Consumption													
	Coat	642.9		2.95	123.7	mm sh ton	8	5 107	07 Stehnet true	42 F	00 Q2	Cichael Inc.	20 61	3
	OI	8111.5		32.52	254.3		\$0.25	0.032			0.84		13.00%	2
	Natural Gas	3279		16.51	15.6		80.20	0.211		195	y na		5. 10.0 7. 10.0	<u>د</u> ک
	Ethanol (8)	879.3			810	mm gals		1.086					See Gaschol	ę
	End-Use Efficiency	983.3		152			\$0.06							
	Derrived Fuels													
	Gasoline	2,584.3		10.8	86.4	86.4 bil oals	\$0.24	00	0.03 Sinalion	A 48	5	nalen	2000	à
	Gaschol (8)	1,079.4		6.0	7.5	bil gals	\$1.15	5	0.14 \$/galton	8.48	<u>8</u>		2.02.% 13.58%	
	Subsidies to Carbon (Note 7)	19,612.3	From NEWFI	JLL.WKt. pi	int rance "c	arbon": inchi	les subsidie	s to carbon j	19.612.3 From NEWFULL, WK1. print ranse "carbon": includes subsidies in carbon usion randed infraeturchus 2 D2.0	draetnicthina J				
	mm tons of carbon emitted from fossit fuel combustion in 1989	l from tossit fue.	combustion	In 1989					a multon Builde					
		5,783												
	Subsidynan	3.39												
Notes:	188: 1													
E	Coal, oil, natural gas split between direct consumption & raw fuel on the basis on consumption by each sector (see Part 2).	ct consumption	i & raw fuel o	n the basis (M consumpt	tion by each	sector (see	Part 21.						
ଷ		on are given in	terms of hea	1 equivalents	s of input fue	IS. EIA, AEF	3 '91, tab. 95	5, 217; and t	ab. 94. 215: h	vdro electric c	ata from E	AFR 91 Tahla	.	
3		n are significam	thy lower than	input heat	alves due to	o losses in co	nveision an	d transmissi	on of about 2	5			-	
Ŧ		tes 63, 79, 85, 92.	- Qi											
ŝ		ed average of c	consumption	in commerci	al, residenti;	al, industriai	and transpor	tation sector	rs in 1989. ba	sed on data in	EA			
	Annual Energy Review, 1991, Tables 31, 63, 79 and 85. Prices per standard unit are derived from minibu prices, except for the electricity sector.	1,63, 79 and 8	5. Prices pe	r standard u	nitarederive	ed from mmb	tu prices, ex	cept for the	electricity sec	Đ.				
	Simultity values for electricity represent the cost of heating potential at end use, and reliect generation and transmission losses. Data on the retail price of electricity are from ElA, AER 1991. Table 102	the cost of hea	ting potential	lat end use,	and reliect (generation au	nd transmiss	tion losses.	Data on the r	stail price of e	lectricity ar	e from EIA, AER 1	991. Table 102.	
9	Conversion rates, calculated by standard units/mm Btu consumption for each energy type.	rd units/mm Bit	u consumptio	n for each e	nergy type:					-	•			
	Coal: 123.7 mm short tons = 2.95 Quad; 1 short ton = 23.85 mmbhu	d; 1 short tan =	23.85 mmbh	-										
	Oil: 32.519 Quad = 6,055.4 mm bbl/yr; 1 gal oil	1 gal oil = .128 mmbtu	mbtu											
	Nat. Gas: $15.57 \text{ trill of} = 16.516 \text{ quad of non-utility use; } 1 \text{ cl} = 1,061 \text{ bt } wcd$	non-utility use;	1 d = 1,061	btu/cf										

60

Based on conversion rates of 102 mm tors/Ouad for coal, 80 mm tons/O for oil and 57.5 mm tons/quad for natural gas, in John Justus, "Global Cirnate Change," Congressional Research Service, 8/28/90, p. 8. DOE, Office of Alcohol Fuels, "11th Annual Report on the Use of Alcohol in Fuels," 1990. Gaschol estimate assumes 10% ethanol, and the same mmBlugal and pricegal as for gasoline.

Part 2: Derivation of Shares to Electricity

٦,

Pd. Direct	15.58% 95.06% 85.19%
Pot. Efectric	84.42% 4.94% 14.81%
Quads Used for Electricity (2)	15.99 1.69 2.87
Total Consumption in 1969 (Quads) (1)	18.94 34.21 19.38
	Coal Oil Natural Gas

Part 3A: Derivation of Weighted Averages for Prices

EIA, Arnual Energy Review 1991, Table 3.
 EIA, Arnual Energy Review, 1991, Table 32, p. 211

. . -

)	•				
Sector	Resident. & Commer.	Indust. & Mis.c.	Transport	5	Total	Source
Coal (mm short tons)						
Consumption	6.2	117.5	0	766.9	890.6	EIA, AEA '91, Table 85, p. 193,
Percent Shares	0.70%	-	0.00%	86.11%		
% Non-Utility	5.01%		0.00%			
Prices, \$ mm Btu	1.99	1.66	0	1.45		EIA, AER '91, Table 31
Wghtd Ave., non-util.					1.68	-
Natural Gas (tril. cf)						
Consumption	7.05	7.69	0.63	2.79	18.36	EIA. AER 91. Table 79 o 177
Percent Shares	38.40%	42.97%	3.43%	15.20%		
% Non-Utility	45.28%	50.67%	4.05%			
Prices, \$ mm Blu	5.16	2.94	2.94 No data	2.36		EIA, AER '91, Table 31
Wghtd Ave., non-util.					3.83	•
Petroleum Products (mm b/d)						
Consumption	1.32	4.26	11.01	0.074	16.664	EIA, AER '91, Table 63, p. 141.
Percent Shares	7.92%	25.56%	66.07%	0.44%		
% Non-Utility	2.96%	25.68%	66.37%			
Prices, \$ mm Btu	6.81	4.69	7.22	2.95		EIA, AEA '91, Table 31
Wghtd Ave., non-util.					6.54	-
Electricity Sales (bil kWh)						
Consumption	1632	926	8	0	2648	EIA, AER '91, Table 96.
Percent Shares	61.63%	34.97%	3.40%	%00'0		
Prices, \$ mm Btu	21.64	13.85	22.96	0		EIA AER '91, Table 31.
Wghtd Ave., non-util.				18	18, 1803549	Transport includes some street lighting
Prices, cents/kWh	7.4	4.7	6.2	0		EIA, AER '91, Table 102
					6.415	

Part JD. Derivation of Substates to Motor Fuel

EIA, AER '91, Table 24 Includes ethanol, aviation tuel EIA, AER '91, Table 59.		Assumes 10% ethanol/gal. From ETHANOL.WK1; based on sales, not production, since excise tax exemption occurs	ELA, AER, Table A1.	"Gasoline" fine x btu/gal (Includes ethanol; excludes diese! and aviation fuel) From above	2nd col. = % share of oil used in gasoline. Pro-rated to reflect 90% gasoline/10% ethanol mix; 2nd col. =% of tot. oi used in gasolnol. ELA, AER 91, Table 73.			
7,437.00 k bbVday 114.01 bil galvyr	17.60%	93.94 bilgaliyr 7.5 bilgaliyr 86.4	0.125 mm btu/gallon	11.742948 Quadrilion btu 34.21 34.23%	92.81% 31.86% 7.19% 2.47% 1.06 \$/gal			
Consumption of transport fuels, 1989	Aviation fuel as % refinery output in 1969	Gasofine Less gaschol Net gasoline	Heat content, gasofine	Quads of Gasoline + Gasohol Quads of Oi} Consumed in '89 Gasoline/total oi	Gasoline share Gasohol Share Ave. price for gasoline, 1989			

.

ELECTRICITY MIX ALLOCATION BASE FOR 1989

Allocation Base	Total	Total	Electric.	Electric.	Electric.	Electric.	Electric.	Conserv./	Biomass	Wind	Solar	Geotherm.	Waste-to
1989 Data Unless Otherwise Noted	Program	Energy	Finnion	Oi	Coal	Gas	Hydro	Ellic.					Energy
ENERGY CAPACITY MEASURES													
ELECTRICITY MIX													
Renewables Elect. Net Gen. Mix (Mil. kWh)	11,309.3								1,017.1	0.5	2.6	9.341.7	947.
Percent									8.99%	0.00%	0.02%	82.60%	8.36
	Renowables d	lata from EIA, Form	n 759, Month	ly Powerplant A	leport. Does not in	clude wind far	ms that sel	power to u	rdities.			Total:	
Electricity Mix (Net Gener., Bil. KWh)	2784	2784	529	158	1554	267	265	0.00	1.02	0.00	0.00	9.34	0.9
Percent	100.0%		19.00%	5.68%	55.82%	9.59%	9.52%	0.00%	0.04%	0.00%	0.00%	0.34%	
	EIA, Annual E	nergy Review, Feb	. 1991, p. 21	1,									0.00

Doug Kopiow - 02-Feb-93 - ALLOCATION.WK1 - Page 1

PDF compliments of www.earthtrack.net

Federal Energy Subsidies:

Energy, Environmental, and Fiscal Impacts

Technical Appendix (Appendix B)

by Douglas N. Koplow Lexington, Massachusetts

April 1993

The Alliance to Save Energy Energy Price and Tax Program Mary Beth Zimmerman, Program Manager

© The Alliance to Save Energy and Douglas N. Koplow, 1993